

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India. <u>www.pmu.edu</u>

M.Sc. Data Science

Curriculum & Syllabus (Regulation - 2023) (Applicable to the students admitted from the Academic year 2023 - 2024)

Department of Computer Science and Applications Faculty of Computing Sciences & Engineering Periyar Maniammai Institute of Science & Technology (PMIST) Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403. headmca@pmu.edu | www.pmu.edu

TABLE OF CONTENTS

S. No	Contents	Page No.
1.	Institute Vision and Mission	3
2.	Department Vision and Mission	3
3.	Members of Board of studies	4
4.	Department Vision and Mission Definition Process	5
5.	Programme Educational Objectives (PEO)	6
6.	PEO Process Establishment	8
7.	Mapping of Institute Mission to PEO	9
8.	Mapping of Department Mission to PEO	9
9.	Programme Outcome (PO)	10
10.	PO Process Establishment	13
11.	Correlation between the POs and the PEOs	14
12.	Curriculum development process	15
13.	Course Development	17
14.	Faculty allotted for course development	18
15.	Pre-requisite Course Chart	19
16.	M.Sc. Data Science – Curriculum	20
17.	M.Sc. Data Science- Syllabus	24
18.	 Annexure - I a) Department Advisory Committee - Members Approval b) Department Advisory Committee - Agenda & Minutes c) Department Advisory Committee - Members Feedback 	**
19.	 Annexure - II a) Board of Studies Meeting - Members Approval b) Board of Studies Meeting - Agenda & Minutes c) Board of Studies Meeting - Feedback from Stake holders 	**

University Vision and Mission

Vision

To be a university of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.

Mission

UM1: Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.

UM2: Providing student - centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.

UM3: Involving progressive and meaningful research with concern for sustainable development.

UM4: Enabling the students to acquire the skills for global competencies.

UM5: Inculcating Universal values, Self-respect, Gender equality, Dignity and Ethics.

Vision and Mission

Vision

To be a leading, contemporary, innovative Computer Science and Applications department in inculcating professional competencies in the field of Computing and related interdisciplinary technologies to achieve academic excellence and to facilitate research activities as a timely response to dynamic needs and challenges of industry and society.

Mission

- DM1: Imparting quality education in the field of Computing Sciences and Applications and generate successful computing professional
- DM2: Encouraging students to collaborate with industry environment and analyze the real-world problems culminating in efficient solutions.
- DM3: Transforming students into computing professionals and entrepreneurs by imparting quality training and hands on experience with latest tools and technologies.
- DM4: Promoting activities in creating applications in emerging areas of computing technologies and applications in order to serve the needs of research, industry, society and scientific community.
- DM5: Inculcating value based and ethical commitment for bringing out successful professionals.

S. No	Name of the Member	Role	Designation and Address
1.	Dr. J. JEYACHIDRA	Dean	Professor and Dean, Faculty of Computing Sciences and Engineering (FCSE), Periyar Maniammai Institute of Science & Technology, Vallam.
2.	Dr. D. RUBY	BoS Chairman	Associate Professor and Head, Department of Computer Science and Applications, Periyar Maniammai Institute of Science & Technology, Vallam.
3.	Dr. S. NICKOLAS	Academic Expert	Professor, Department of Computer Applications, NIT, Tiruchirappalli. <u>nickolas@nitt.edu</u> , <u>nickolasnitt@gmail.com</u> , 94435 61989, 94860 01131
4.	Mr. J. SENGATHIR	Industry Expert	Manager Enterprise Resource Planning, BHEL Trichy – 620 014 <u>Sengathir@bhel.in</u> 9489051236
5.	Dr. V. ADITHYA POTHAN RAJ	Industry Expert	Associate Operations Manager, CTS, Chennai. <u>apr1991@rediffmail.com</u> 9444408814
6.	Dr. A. MUTHAMIZH SELVAN	BoS Member Internal	Associate Professor, Department of Computer Applications, Periyar Maniammai Institute of Science & Technology, Vallam.
7.	Dr. S. ARUMUGAM	BoS Member Internal	Associate Professor, Department of Computer Applications, Periyar Maniammai Institute of Science & Technology, Vallam.
8.	Dr. V. SRITHAR	BoS Member Internal	Assistant Professor, Department of Computer Applications, Periyar Maniammai Institute of Science & Technology, Vallam.
9.	Dr. S. BHUVANESWARI	BoS Member Internal	Associate Professor and Head, Department of Mathematics Periyar Maniammai Institute of Science & Technology, Vallam.
10.	Dr. D. THAYALNAYAKI	BoS Member	Associate Professor and Head, Department of Civil Engineering

MEMBERS OF THE BOARD OF STUDIES

Department of CSA | M.Sc. Data Science Curriculum (2023-2024)

		Internal	Periyar Maniammai Institute of Science & Technology, Vallam.
11.	Dr. V. SARANYA	BoS Member Internal	Associate Professor and Head, Department of Languages, Periyar Maniammai Institute of Science & Technology, Vallam.
12.	Ms. K. BIRUNTHA	Student Member	MCA 2 nd Year Student Periyar Maniammai Institute of Science & Technology, Vallam.
13.	Mr. R. MURUGANANDHAM	Alumni Member	Alumni, MCA (Batch : 2019-2021) Machine Learning Engineer Changepond Technologies, Sipcot IT park, Siruseri, Chennai-103

The current M.Sc. Data Science Curriculum is undergone in **Department Advisory Committee Meeting on 25.05.2023 and Board of studies Meeting on 15.06.2023** to tune the syllabus towards Outcome based Education and meet the UGC requirements and in turn the suggestions provided will be implemented in Regulations 2023.

It is thoroughly felt there is a need to change the present curriculum in order to graduate the students who possess skills that are employable. Hence, appropriate modification in the existing curriculum will augment the manpower and skill requirement of our country. The quality of an educational system can be judged from at least three perspectives: the inputs to the system, what happens within the system and the outputs from the system. In order to refine the input to the system, BoS members redefined the curriculum with the focus towards outcome-based education.

In this connection, it is felt to frame the department vision and attain the vision through a well-structured mission framed in consultation with the faculty members and other administrators of Periyar Maniammai Institute of Science & Technology.

Department Vision and Mission Definition Process

The development of vision and mission of the department is carried out as per the following steps.

Step : I	Brainstorming/Feedback carried out at different levels					
	First level - Department faculty by the HOD					
	Second level - Current students by the faculty					
	Third level - Employers, alumni and academia and industry experts					
Step: II	Benchmarking with other Universities: Understanding the Vision and					
	Mission					
Step: III	Validation by the Board of studies and then Academic Council					
Step: IV	Wide publicity in the department and institution					

The University Vision is split up into small elements and verifies its compliance with Department Vision.

To be a university of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.

To be a leading, contemporary, innovative Computer Science and Applications department in inculcating professional competencies in the field of Computing and related interdisciplinary technologies to achieve academic excellence and to facilitate research activities as a timely response to dynamic needs and challenges of industry and society.

University Vision	Department Vision
	To be a leading, contemporary, innovative
To be a university of global	Computer Science and Applications department
dynamism with excellence in	in inculcating professional competencies in the
knowledge and innovation	field of Computing and related interdisciplinary
ensuring social responsibility for	technologies to achieve academic excellence and
creating an egalitarian society	to facilitate research activities as a timely response
	to dynamic needs and challenges of industry and
	society.
Clabel Demension	Placement (Global Level)
Giodal Dynamism	Teaching Learning (New Technologies)
Social Responsibility	Contribution (Needs and challenges of Industry
Social Responsibility	and Society)

To accomplish the vision stated, well-structured mission is established with consultation with administrators, faculty members and other officials.

University Mission	Department Mission
Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.	Imparting quality education in the field of Computing Sciences and Applications and generate successful computing professional
Providing student - centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.	Encouraging students to collaborate with industry environment and analyze the real- world problems culminating in efficient solutions.
Involving progressive and meaningful research with concern for sustainable development.	Transforming students into computing professionals and entrepreneurs by imparting quality training and hands on experience with latest tools and technologies.
Enabling the students to acquire the skills for global competencies.	Promoting activities in creating applications in emerging areas of computing technologies and applications in order to serve the needs of research, industry, society and scientific community.
Inculcating Universal values, Self- respect, Gender equality, Dignity and Ethics.	Inculcating value based and ethical commitment for bringing out successful professionals.

Mapping of University Vision and Department Mission

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	1	1	1	1	7
UM2	1	2	3	2	0	8
UM3	0	1	2	3	2	8
UM4	1	1	3	3	0	8
UM5	1	1	0	1	3	6

0-No relation 3- High relation 2- Medium relation 1- Low relation

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

Based on the mission of the department, the programme educational objectives are formulated as

PEO1	Graduates of the programme will be employed in industry, government
	and entrepreneurial endeavors to have a successful professional career.
PEO2	Graduates of the programme will pursue higher education and /or
	research
PEO3	Graduates of the programme will contribute to the society and human
	well-being by applying ethical principles.
PEO4	Graduates of the programme will reveal lifelong learning and team work
	in their chosen professional

PEO PROCESS ESTABLISHMENT

The faculty of the CSA department at our institution met on different occasions for discussion and a final work session to complete the steps of the process in order to draft the set of PEOs for CSA Department to assess the graduates few years after graduation.

The framework for the review and revision of the PEOs at the departmental level involving all the faculty members comprised the following broad stages.

- 1. Using the key words and phrases extracted from the Mission Statement of the institution and department to identify attributes to gauge graduates.
- 2. Capturing the distinction between the educational objective and the student outcomes.

3. Formulating each objective to be measurable.

The program educational objectives for the M.Sc. Data Science program describe accomplishments that graduates are expected to attain within three years after graduation. Graduates will have applied their expertise to contemporary problem solving, be engaged professionally, and have continued to learn and adapt, and have contributed to their organizations through leadership and teamwork.

	DM1	DM2	DM3	DM4	DM5
PEO1	3	3	1	1	1
PEO2	1	2	0	3	1
PEO3	1	1	1	1	3
PEO4	2	2	1	1	3
Total	7	8	3	6	8
	1- Low 2 – Medium				

Mapping of Program Educational Objectives (PEOs) with Department Mission (DM)

The development of vision, mission and programme educational objectives is tuned in line with the global and national standards and it is assured that the department vision and mission will facilitate in meeting the vision and mission of the University.

The Program Educational Objectives shall cover both technical and professional aspects of the expected achieve-Achievement in terms of technical skills required in the profession for which the program prepares students

- Achievements in terms of professional, ethical, and Communicational aspects required by the profession for which the program prepares students (team work, ethical behavior, effective communication, etc.)
- Achievements in terms of management and leadership skills (project managers, directors, CTOs, CEOs, etc.)
- Achievements in terms of life-long learning and continuous education (certifications, conferences and workshops attendance, etc.)
- Achievements in terms of advanced and graduate studies pursuing (graduate studies, research careers, etc.)

Other aspects could be considered when defining educational objectives such as the ability to engage in entrepreneurship activities.

PROGRAMME OUTCOME (PO)

At the time of graduation, competency of the student is measured through the attainment of programme outcomes. The quantification of programme outcomes attainment is measured through the assessment of established course outcomes for each course.

PROGR	AM OUTCOMES
PO 1	Ability to apply knowledge of basic sciences, mathematics, probability
	and statistics, computer science and solve problems.
PO 2	Ability to model, analyse, design, visualize and realize physical systems
	orprocesses of increasing size and complexity
PO 3	An ability to understand, analyse and design efficient algorithms
PO 4	Development of soft skills and practicing professional ethics
PO 5	Develop and implement data analysis strategies based on theoretical
	principles, and detailed knowledge of the underlying data.
PO 6	An ability to analyze very large data sets in the context of real world
	problems and interpret results using data analytics.
PO 7	An ability to understand the interdisciplinary nature of data, information
	and communications.
PO 8	An ability to understand research methods used to collect and analyze
	data for decision making.
PROGR	AM SPECIFIC OUTCOME
Reat	
PSO1	Able to become data scientist in Industry, Government and academia.
PSO2	Able to use the modern tools, techniques to apply in the multidisciplinary tasks and carry out research to solve the practical problems.

GRADUATE ATTRIBUTES

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The GAs are examples of the attributes expected of a graduate from an accredited programme. The computing professional Graduate Attributes are derived from NBA and National Institutes.

- 1. **Disciplinary knowledge:** Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.
- 2. **Communication Skills:** Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one"s views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.
- 3. **Critical thinking:** Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.
- 4. **Problem solving:** Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.
- 5. **Analytical reasoning**: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesise data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.
- 6. **Research-related skills:** A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyze, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation.

- 7. **Cooperation/Team work**: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.
- 8. **Scientific reasoning:** Ability to analyze, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.
- 9. **Reflective thinking:** Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.
- 10. **Information/digital literacy:** Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.
- 11. **Self-directed learning:** Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
- 12. **Multicultural competence:** Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.
- 13. Moral and ethical awareness/reasoning: Ability to embrace moral/ethical values in conducting one"s life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.
- 14. Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.
- 15. **Lifelong learning:** Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal

development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

PO PROCESS ESTABILSHMENT

CORRELATION BETWEEN THE POS AND THE PEOS

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	Total
PEO 1	3	3	2	1	2	2	1	1	3	3	21
PEO 2	1	1	1	1	1	3	1	3	1	3	16
PEO 3	1	1	1	3	1	1	1	1	1	1	12
PEO 4	2	2	2	2	2	2	2	3	3	2	22
Total	7	7	6	7	6	8	5	8	8	9	71

 Table: 1 Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

1	- Low	2 – Medium	3 - High
Table :2 Mapping of Pro	ogram Outcomes	(POs) with Graduate	Attributes (GAs)

GA		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PS	TOT
										1	O2	AL
1.	Disciplinary knowledge: PO 1 PSO2	3								3	3	9
2.	<i>Communication</i> <i>Skills:</i> PO4.				3							3
3.	Critical thinking: PO2 PO3.					3	1			2	2	8
4.	Problem solving: PO2 PO3 PO4 PSO 1 PSO2 PSO3.	1	3							2	2	8
5.	Analytical reasoning: PO2 PO3 PO4.					3	3			2	2	10
6.	Research-related skills: PO2 PO3 PO4PSO1 PSO 3			1				1	3	2	3	10
7.	Cooperation/Team work: PO5.				3					1	2	6
8.	<i>Scientific reasoning:</i> PO2 PO3 PO4.		1				2	1	1	2	2	9
9.	<i>Reflective thinking:</i> PO6.		3			3				2	2	10
10.	Information/digital literacy:PO 3, PSO 1.	3								3	1	4

11. Self-directed learning:PO5 PO7.		3				3	1	1	8
12. Multicultural competence:PO5.					3		1	2	6
13. Moral and ethical awareness/reasoning : PO6.		3					1	1	5
14. Leadership readiness/qualities: PO5.		3					1	1	5
15. Lifelong learning:PO7.	2		2	2		2	1	1	10

1- Slightly	2 – Supportive	3 - H
		U 1.

3 - Highly related

CURRICULUM DEVELOPMENT PROCESS

- (Start Here for new programme or when DV/DM/PEO expires) Develop PEO of the programme. Ensure its relation with Department Mission
- 2. Check for statutory body GAs. Derive POs, PSO with GAs and PEO into consideration.
- 3. Gather core courses and elective courses from statutory bodies) model syllabus /Profession bodies (Programme Specific Criteria and develop COs to fulfil the POs and PSOs. Note: Do the step with top 10 programmes from NIRF or QS ranking if there is no statutory bodies syllabus is not available.
- 4. Compare with existing (if there is) courses and update.
- 5. Develop course syllabus for each course selected in step 2 and 3 by specialist (Faculty Competency Matrix) in that area..
- 6. For revision of existing syllabus, Incorporate the actions taken in terms of curriculum intervention based on CO attainment, feedback from student, teacher, alumni and employer. Incorporate the suggestions given by academic and industrial expert during DAC and
- 7. Gather mandatory courses given by statutory bodies
- 8. Design (or fit given) additional courses which reflect University Vision and Mission.
- 9. Ensure presence of employability/entrepreneurship and skill development component in courses.

- 10. Ensure cross cutting courses available.
- 11. Compare the credit distribution with statutory bodies guidelines
- 12. Draw Course Articulation Matrix. If POs are not uniformly covered, go to step 3 and repeat.
- 13. Check for C P A distribution. If not as planned go to step 3 and repeat.
- 14. Present the curriculum and syllabus to Department Advisory Committee, Get the feedbacks and incorporate.
- 15. Present the curriculum and syllabus to BoS Get the feedbacks and incorporate
- 16. Present the curriculum and syllabus to ACM Get the feedbacks and incorporate
 - a. Initiate augmentation of teaching learning tools and other infrastructure which are not present in the department/institute for new additions in this regulation

Curriculum Design and Development Process - Revision

COURSE DEVELOPMENT

The following elements were developed by the faculty involved after interaction and discussions.

S. N o	Sem	Category	Code	Subject Name	Faculty Members	
1.	Ι	DSC-1	YDS101	Principles of Data Science	Dr. D. Ruby	
2.	Ι	DSC-2	YDS102	Advanced Statistical Methods - I	Dr. A. Muthamizh Selvan	
3.	Ι	DSC-3	YDS103	Python and R Programming	Dr. S. Arumugam	
4.	Ι	DSC-4	YDS104	Advanced Algorithms and Data Structures	Dr. V. Srithar	
5.	Ι	DSC – 5	YDS105	Advanced Database Management Systems	Ms. T. Logesh	
6.	Ι	DSC - 6 - Lab	YDS106	Python and R Programming Laboratory	Ms. P. Ranjani	
7.	Ι	DSC – 7 – Lab	YDS107	Advanced Database Management Systems Laboratory	Ms. G. Umamaheswari	
8.	Ι	SEC - 1	YDSSE1	Interpersonal and Delivering Skills	Ms. K. Nandhini	
9.	II	DSC - 8	YDS201	Machine Learning Techniques	Ms. I.Epistle	
10.	II	DSC - 9	YDS202	Advanced Statistical Methods - II	Dr. A. Muthamizh Selvan	
11.	II	DSC - 10	YDS203	Big Data Analytics	Dr. J.Jeyachidra	
12.	II	GEC – I		Data and Information Security	Ms. R. Sivaranjani	
			VD00E*	Block chain Technologies	Dr. S. Manimozhi	
			YDSGE*	Cryptography and Network Security	Ms. R. Manisha	
13.	II	DSE – I		Health Care Analytics	Ms. G. Praveena	
			YDSDE*	IoT Analytics	Ms. M. Umamaheswari	
				Image and Video Analytics	Ms. R. Ragini	
14.	II	DSC – 11 Lab	YDS204	Machine Learning Techniques Laboratory	Ms. M. Lavanya	
15.	II	DSE – II		Health Care Analytics Laboratory	Ms. M. Swathi	
		Lab	VDCDE*	IoT Analytics Laboratory	Dr. G. Preethi	
			I DSDE	Image and Video Analytics Laboratory	Mr. P.Karthik	
16.	II	SEC – 2	YDSSE2	Cyber Security	Ms. K. Radhika	
17.	III	DSC - 12	YDS301	Business Intelligence	Ms. K. Nandhini	
18.	III	DSC - 13	YDS302	Exploratory Data Analysis and Visualization	Ms. G. Umamaheswari	
19.	III	DSC - 14	YDS303	Deep Learning	Ms. I.Epistle	
20.	III			Digital Image Processing	Ms. T. Logesh	
		GEC – II	YDSGE*	Natural Language Processing	Ms. P. Ranjani	
				Cloud and Edge Computing	Ms. R. Sivaranjani	
21.	III	DSC - 16	YDS305	Business Intelligence Laboratory using Advanced Excel and Power BI	Dr. S. Manimozhi	
22.	III	DSC - 17	YDS306	Deep Learning Laboratory	Ms. R. Manisha	
23.	III	SEC - 3	YDSSE3	Research Ethics and Skills	Ms. G. Praveena	
24.	IV	DSC - 18	YDS401	Review of Literature	Ms. M. Umamaheswari	

FACULTY ALLOTTED FOR COURSE DEVELOPMENT

PRE-REQUISITE COURSE CHART

M.Sc. Data Science

Detailed Curriculum (Regulation – 2023)

(Applicable to the students admitted from the Academic year 2023 - 2024)

Course	Course Name	Cradita	Но	ours	/We	ek	Max. Marks			
Code		Creatts	L	Т	Ρ	Tot.	CIA	ESE	Tot.	
	SEMESTER	- I						[
YDS101	DSC - 1 : Principles of Data Science	4	3	1		4	50	50	100	
YDS102	DSC - 2 : Advanced Statistical Methods - I	5	4	1		5	50	50	100	
YDS103	DSC - 3 : Python and R Programming	4	3	1		4	50	50	100	
YDS104	DSC - 4 : Advanced Algorithms and Data Structures	3	3			3	50	50	100	
YDS105	DSC - 5 : Advanced Database Management Systems0	3	3			3	50	50	100	
YDS106	DSC - 6 - Lab : Python and R Programming Laboratory	2			4	4	50	50	100	
YDS107	DSC - 7 - Lab : Advanced Database Management Systems Laboratory	2			4	4	50	50	100	
YDSSE1	SEC - 1 : Interpersonal and Delivering Skills	2	1	1		2	60	40	100	
	Mentoring					1				
	Total (Semester - I)	25	17	4	8	30				
	SEMESTER	- II								
YDS201	DSC - 8 : Machine Learning Techniques	4	4	1		5	50	50	100	
YDS202	DSC - 9 : Advanced Statistical Methods - II	5	4	1		5	50	50	100	
YDS203	DSC - 10 : Big Data Analytics	3	3			3	50	50	100	
YDSGE*	GEC – I : General Elective Course – I	3	3			3	50	50	100	
YDSDE*	DSE - I : Discipline Specific Elective - I	3	3			3	50	50	100	
YDS204	DSC - 11 - Lab :	2			4	4	50	50	100	

Department of CSA | M.Sc. Data Science Curriculum (2023-2024)

Course	Course Name	Credits	Hours/Week Max. M			ĸ. Má	arks		
	Machine Learning Techniques Laboratory								
YDSDE*	DSE – II Lab : Discipline Specific Elective – II (Laboratory)	2			4	4	50	50	100
YDSSE2	SEC - 2 : Cyber Security	3	2	1		3	60	40	100
	Mentoring					1			
	Total (Semester - II)	25	18	3	8	30			
	SEMESTER	- III							
YDS301	DSC - 12 : Business Intelligence	4	3	1		4	50	50	100
YDS302	DSC - 13 : Exploratory Data Analysis and Visualization	4	4	1		5	50	50	100
YDS303	DSC - 14 : Deep Learning	4	3	1		4	50	50	100
YDS304	DSC - 15 : Mini Project	3		1	2	3	60	40	100
YDSGE*	GEC - II : General Elective Course - II	3	3			3	50	50	100
YDS305	DSC - 16 : Business Intelligence Laboratory using Advanced Excel and Power BI	2			4	4	50	50	100
YDS306	DSC - 17 : Deep Learning Laboratory	2			4	4	50	50	100
YDSSE3	SEC - 3 : Research Ethics and Skills	2	1	1		2	60	40	100
	Mentoring					1			
	Total (Semester - III)	24	14	5	10	30			
	SEMESTER	- IV							
YDS401	DSC - 18 : Review of Literature	2					60	40	100
YDS402	DSC - 19 : Major Project Work	12					60	40	100
Total (Semester - IV)									

The	The following credits must be earned by the students within the course period								
OER	Online Course (Any one of the course from SWAYAM Platform offered through any Coordinator like NPTEL, NITTR, and IGNOU etc.)	2							
VA	Value Added Course								
	Mentor, Library			2		2			
	Placement Activities			2		2			
	Grand Total (All Semesters)	90							

General Elective Courses - I (GEC - I)

YDSGE1	Data and Information Security
YDSGE2	Block chain Technologies
YDSGE3	Cryptography and Network Security

General Elective Courses - II (GEC - II)

YDSGE4	Digital Image Processing
YDSGE5	Natural Language Processing
YDSGE6	Cloud and Edge Computing

Discipline Specific Electives – I (DSE – I)

YDSDE1	Health Care Analytics
YDSDE2	IoT Analytics
YDSDE3	Image and Video Analytics

Discipline Specific Electives - II (DSE - II) - Laboratory

YDSDE4	Health Care Analytics Laboratory
YDSDE5	IoT Analytics Laboratory
YDSDE6	Image and Video Analytics Laboratory

NOTE :

DSC – Department Specific Course

SEC – Skill Enhancement Course

GEC – Generic Elective Courses

 $\boldsymbol{DSE}-\boldsymbol{Discipline}\ \boldsymbol{Specific}\ \boldsymbol{Elective}$

Summary

Department of CSA | M.Sc. Data Science Curriculum (2023-2024)

Total Number of courses proposed with the credits is given below:

S. No.	Type of Courses	Numbers	Total Credit
1	DSC	19	70
2	DSE	1	3
3	DSE - Lab	1	2
4	SEC	3	7
5	GEC	2	6
6	MOOC	1	2
	TOTAL	27	90

Total Credits = 90

Total Credit	DSC	DSE	DSE- Lab	SEC	GEC
90	70	3	2	7	6
	78%	3.3%	2.2%	7.7%	6.6%

M.Sc. Data Science

Detailed Syllabus (Regulation - 2023)

(Applicable to the students admitted from the Academic year 2023 - 2024)

SEMESTER - I

			Domain	Но	ours	/ W	/eek	Max	. Ma	rks		
Cou	rse le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDS	101	PRINCIPLES OF DATA SCIENCE	4	4:0:0	3	1		4	50	50	10 0	
Pre-req	uisite	Fundamentals of Data Science										
On suc	cessfi	Course Outcomes ul completion of this course, the stude	nts will l	be able to	o :	D	om	ain	L	.evel		
CO1	<i>Reme</i> scienc	<i>mber</i> and <i>Understand</i> the fundamental co	ncepts o	f data		Co	ogni	tive		K1		
CO2	<i>Under</i> in data	<i>rstand</i> the tasks, Algorithms, Components a science process	and dat	abases use	ed	C	ogni	tive		K2		
CO3	<i>Descr</i> variou	<i>ibe</i> the data science process; <i>Explore</i> and us techniques and <i>Evaluate</i> the Models	Visualiz	e the data	by	C	ogni	tive		K2		
CO4	<i>Illusti</i> foreca	<i>rate</i> the recommendation engines and <i>Disc</i> asting systems	ies	C	ogni	tive		K2				
CO5	<i>Under</i> detect	<i>rstand</i> and <i>Apply</i> the suitable feature selection techniques	ction and	l anomaly		C	ogni	tive	K2			
CO6	Apply	suitable data science tools in various appl	lications			Co	ogni	tive	K2			
* K1 - F	Remerr	bber: K2 - Understand: K3 - Apply: K4 - Ap	alvze: K	5 - Evaluat	e: K	6 –	Crea	ate				
		Module - I : Introduction to I	Data So	cience	, 1		erec		1	2 Hrs	s	
Data Venn Data Algor Scien	Scienc diagr - Dat ithms ce - D	ce Definitions and Needs - Volume and am of Data science - Facets of Data a Science Process - Associated Field for Data Science - Business Intellige patabases for Data Science.	d Dimer - Data ds - Cl nce and	nsions - (and Vari assificati l Data Sc	C's able on cien	and e T of ce	V'i ype: Data - Co	s in E s - Fo a Sci ompor	Data Sour L ence nents	Scien evel Tasl of I	.ce - s of ks - Data	
	Module – II : Data Science Process and Evaluation 12 Hrs											
Data Data Univa - Vis Evalu	Data - Causation Versus Correlation - Overview of Data Science Process - Data Preparation - Data Modeling - Applications - Knowledge - Objectives of Data Exploration - Datasets - Univariate and Multivariate Data Exploration - Univariate and Multivariate Data Visualization - Visualizing High Dimensional Data - Roadmap for New Data Exploration - Model Evaluation.											

Module - III : Recommendation and Forecasting Systems

12 Hrs

Recommendation Engines and its Needs - Types of Recommendation Engines - Collaborative Filtering - Content-Based Filtering - Hybrid Recommenders - Taxonomy of Time Series Forecasting - Machine Learning Methods for Time Series Forecasting - Performance Evaluation.

Module - IV : Feature Selection and Anomaly Detection

Classification of Feature Selection Methods - Principal Component Analysis - Information Theory Based Filtering - Chi-Square-Based Filtering - Wrapper Type Feature Selection. Anomaly Detection - Anomaly Detection Techniques - Distance Based Outlier Detection -Density Based Outlier Detection - Local Outlier Factor (LOF).

Module - V: Data Science Tools and Applications

12 Hrs

12 Hrs

Introduction to Data Science Tools - SAS - Apache Flink - Apache Spark - KNIME - BigML - Excel - RapidMiner - Tableau - Matplotlib - TensorFlow - Weka - Matlab. Applications of Data Science - Hands-on with RapidMiner - Collecting and Analyzing Twitter Data - Collecting and Analyzing YouTube Data.

Lecture	Tutorial	Practical	Total
45	15	0	60

Reference Books

1. Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare. (2022). *Fundamentals of Data Science*, First Edition, CRC Press.

- 2. Vijay Kotu and Bala Deshpande. (2019). *Data Science : Concepts and Practice*, Second Edition, Morgan Kaufmann.
- 3. Davy Cielen, Arno D. B. Meysman and Mohamed Ali. (2016). *Introducing Data Science : Big Data, Machine Learning, and more, using Python Tools*, Manning Publications Co., Island.
- 4. Sinan Ozdemir, (2016). Principles of Data Science Packet Publishing.
- 5. Sanjiv Ranjan Das, (2016). Data Science : Theories, Models, Algorithms, and Analytics, eBook.

Web References

- 1. MIT Course : *Statistical Thinking And Data Analysis*, <u>https://ocw.mit.edu/courses/15-075j-statistical-thinking-and-data-analysis-fall-2011/download/</u>
- 2. Alison Course : *Data Science Regression and Clustering Models*, <u>https://alison.com/course/data-science-regression-and-clustering-models</u>
- 3. Udemy Course : *Data Science, Machine Learning, Data Analysis, Python & R*, <u>https://www.udemy.com/course/data-science-machine-learning-data-analysis-python-r/</u>
- 4. NPTEL Course : *Data Science For Engineers*, By Prof. Ragunathan Rengasamy, Prof. Shankar Narasimhan, IIT Madras, <u>https://onlinecourses.nptel.ac.in/noc23_cs97/preview</u>
- 5. Coursera : *Data Science Math Skills*, Offered by Duck University, https://www.coursera.org/learn/datasciencemathskills
- 6. Coursera : *Introduction to Data Science Specialization*, Offered by IBM, <u>https://www.coursera.org/specializations/introduction-data-science</u>

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	3	3	1	2	2	3	1	3	2
CO3	3	2	2	1	3	3	3	1	2	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	2	2
Total	18	16	16	6	14	16	17	6	16	15
Relativity	$: 0 \rightarrow 0$	No relatio	n 3-	\rightarrow Highly	relation	$2 \rightarrow N$	/ledium re	lation	$1 \rightarrow Low$	relation

Cour	rso			I	Domain	Нс	ours	; / W	/eek	Max	k. Ma	irks		
Coc	le	Course Name	Credit	s	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	102	ADVANCED STATISTIC. METHODS – I	AL 5	ļ	5:0:0	4	1		5	50	50	10 0		
Pre-req	luisite	Linear Algebra, Fundamenta	als of Proba	ab	oility ar	nd S	Stat	isti	cs					
0		Course Outcomes	- (D	om	ain	L	_eve	1		
	Romo	ul completion of this course, the s	Students Will	D	e adle to	0:	C	ogni	itivo	K1				
001	Under	<i>rstand</i> and <i>Apply</i> the concepts of un	certainty and	pi	robabilit	v		Jgm						
CO2	and it	s rules		r			C	ogn	itive	K2				
CO3	Under and su	<i>rstand</i> the descriptive statistics methummarize the data	nods and <i>App</i>	ly	to visual	ize	Co	ogni	itive	е К2				
CO4	<i>Illusti</i> distrit	<i>rate</i> the significance of random variable outions and functions	ables and its p	pro	obability		Cognitive K2							
CO5	<i>Unde</i> Distri	<i>rstand</i> and <i>Apply</i> the suitable varian butions	ts of Discrete	e P	robabilit	y	C	ogni	itive		K2			
CO6	Apply	suitable distribution and also to Ge	<i>nerate</i> randoi	m	sample		Co	ogni	itive		K3			
* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create														
Module - I : Basics of Linear Algebra and Probability												s		
Introc Vecto	duction or Space	n to Linear Algebra - Linear, N ces and sub spaces - Eigen Value	Aatrix and V s and Vector	√e rs	ctor equ - Basic	iatic Line	ons ear	- N Tra	1atrix nsfor	ope matic	ratio	ns -		
Basic Simp	Conc le Pro	epts of Probability - Uncertainty blems - Independent Events - Bay	- Axioms of yes' Rule an	f F d	Probabil Simple	ity - App	Co olica	ondi ation	tional 1s.	Prol	babil	ity -		
		Module - II : Descrip	tive Statis	tio	cs					1	5 Hr	s		
Frequ Distri Tendo of Lin	iency ibutior ency - near C	Table and Distribution - Histograms - Cumulative Frequency Distr Measures of Dispersion - Mome orrelation and Linear Regression	am and Free ibutions - Free ents - Measu	qu rec ire	ency Po quency (es of Sko	olyg Curv ewn	ons ves ess	- F - M and	Relati Ieasu I Kur	ve Fi res o tosis	eque f Cer - No	ency ntral otion		
	Ν	10dule - III : Random Variab	les and D	is	tributi	ons	5			1	5 Hr	S		
Rand Distri - Mar	om V ibutior ginal	ariables - Independent, Discrete ns - Distribution Functions - Prob and Conditional Distributions - N	e and Conti bability Distr Mathematical	nu rib l E	ous Ra outions F Expectat	ndo Func ion	om ction - Va	Var ns - ariai	iables Joint nce an	s, Pro Dist d Co	obab ribut varia	ility ions nce.		
		Module – IV : Discrete Proba	bility Dis	tr	ibutio	ns				1	5 Hr	s		
Densi Multi Distri	ity and noulli butior	d Mass Functions - Discrete P Distribution - Binomial Di n.	robability D stribution	ois -	tribution Multin	ns - omi	Be al	erno Dis	ulli l stribu	Distri tion	butio Pois	on - sson		
	Ν	Iodule - V : Continuous Prol	oability D	is	tributi	ons	5			1	5 Hr	s		
Conti Distri Distri	nuous butior butior	Probability Distributions - Norm - Gamma Distribution - F D - Random Number Generation i	nal Distributi istribution - n data simul	ioı - S	n - Unif Student- ion.	orm t D	Di Distr	strit ibut	outior tion -	ı - Cł Exp	ii-sq oonei	uare ntial		
			Lecture		Tutori	al	Ρι	ract	ical	٦	Γotal	l		
			60		15			0			75			

Reference Books

- 1. David C. Lay, Steven R. Lay, Judi. J. Mcdonald. (2016). Linear Algebra and its Applications, Fifth Edition, Pearson.
- 2. Montgomery, D. C., and Runger, G. C. (2018). Applied Statistics and Probability for Engineers, Seventh Edition, John Wiley & Sons, Inc.
- 3. Bruce, P., Bruce, A., and Gedeck, P. (2020). Practical Statistics for Data Scientists, Second Edition, O'Reilly Media, Inc.
- 4. Spiegel, M. R., Schiller, J. J., and Alu Srinivasan, R. (2013). Probability and Statistics, Fourth Edition, Schaum's Outline Series, McGraw Hill Companies, Inc.
- 5. Carlos Fernandez-Granda. (2017). Probability and Statistics for Data Science, New York University.

Web References

- 1. NPTEL Course : *Linear Algebra* by Prof. A.K. Lal, IIT Kanpur, https://nptel.ac.in/courses/111104137
- 2. NPTEL Course : Introduction to probability and Statistics, by Prof. G. Srinivasan, IIT Madras, https://nptel.ac.in/courses/111106112
- 3. NPTEL Course : Descriptive Statistics with R Software, by Prof. Shalabh, IIT Kanpur, https://nptel.ac.in/courses/111104120
- 4. NPTEL Course : Probability and Distributions, by Prof. Neeraj Misra, IIT Kanpur, https://nptel.ac.in/courses/111104032

	1001	F302
CO1 3 3 3 1 2 2 3 1	3	2
CO2 3 3 3 1 2 2 3 1	3	2
CO3 3 2 2 1 3 3 3 1	3	3
CO4 3 2 2 1 3 3 2 1	3	3
CO5 3 3 3 1 2 3 3 1	3	3
CO6 3 3 3 1 2 3 3 1	3	2
Total 18 16 16 6 14 16 17 6	18	15

COs - POs / PSOs Articulation Matrix

Relativity : $0 \rightarrow \text{No relation}$

 $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation $1 \rightarrow \text{Low relation}$

Code Course Name Credits C: P: A L T P Tot CLA ESE T YDS103 PYTHON and R PROGRAMMING 4 4:0:0 3 1 4 50 50 1 Pre-requisite Basic Programming and Fundamentals of Data Science Course Outcomes Domain Level C01 Remember the essential concepts in python programming and Appty for different problems Cognitive K1 C02 Understand the NumPy libraries and Apply to handle the data Cognitive K2 C03 Encember the essential concepts in python programming and Apply real time problems in data visualization Cognitive K2 C04 Recognize the pandas and Matplotib libraries and Apply real time problems Cognitive K1 C06 Iltrasformations Cognitive K2 K1 - Remember, K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create VI VI Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Univers. F	Cour	rs 0			Domain	Но	ours	; / W	/eek	Ma	ĸ. Ma	arks	
YDS103PYTHON and R PROGRAMMING44:0:031450501Course Outcomes Course Outcomes On successful completion of this course, the students will be able to : for different problemsDomainLevelC01Remember the essential concepts in python programming and Apply for different problemsCognitiveK1C02Understand the NumPy libraries and Apply to handle the dataCognitiveK2C03Understand the pandas libraries and Apply to handle the dataCognitiveK2C04Recognize the pandas and Matplotib libraries and Apply real time problemsCognitiveK2C05Remember and Apply the R programming essentials for data science transformationsCognitiveK2C06Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateK1C06Illustrate and Apply the R programming data visualization and transformationsCognitiveK2K4 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateVisualizative and sequences - Functions - Files - Exception Handling in Python12 HrsIntroduction to Python - Features of Python ProgrammingData Structures an Sequences - Functions - Files - Exception Handling in Python12 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universe Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks.12 HrsNutdei - H1 : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggreg	Coc	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
Remember the essential concepts in python programming and Apply for different problems Domain Level Course Outcomes Domain Level Course Outcomes Domain Level Course Outcomes Domain Level Course Outcomes Domain Level Consuccessful completion of this course, the students will be able to : Domain Level Consuccessful completion of this course, the students will be able to : Domain Level Consuccessful completion of this course, the students will be able to : Consuccessful completion of the problems Consuccessful completion of this course, the students will be able to : Consuccessful completion of the puble on the problems Consuccessful completion of the pandas and Apply to handle the data Cognitive K2 Cool inder of this studiation and Apply real time problems in data visualization and Apply the R programming data visualization and Cognitive K2 Module - I : Essentials of Python Programming 12 Hrs	YDS	103	PYTHON and R PROGRAMMING	4	4:0:0	3	1		4	50	50	10 0	
Course OutcomesDomainLevelOn successful completion of this course, the students will be able to :DomainLevelColRemember the essential concepts in python programming and Apply for different problemsCognitiveK1CO2Understand the NumPy libraries and Apply to handle the dataCognitiveK2CO3Understand the pandas libraries and Apply to handle the dataCognitiveK2CO4Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualizationCognitiveK1CO6Remember and Apply the R programming essentials for data science problemsCognitiveK1CO6Illustrate and Apply the R programming data visualization and transformationsCognitiveK2* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateI2 HrsIntroduction to Python - Features of Python ProgrammingI2 HrsIntroduction to Python - Features of Python Python Interpreter and Running Structures an sequences - Functions - Files - Exception Handling - Object Oriented Paradigms.I2 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universi Functions and Walks.I2 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Liniversi 	Pre-req	uisite	Basic Programming and Fundame	entals	of Data	Scie	enc	e					
On successful completion of this course, the students will be able to : Extending the segment of the course is a python programming and Apply Cognitive K1 CO1 for different problems Cognitive K1 CO2 Understand the NumPy libraries and Apply to handle the data Cognitive K2 CO3 Understand the pandas libraries and Apply to handle the data Cognitive K2 CO4 Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualization and transformations Cognitive K1 CO5 Remember and Apply the R programming data visualization and transformations Cognitive K1 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create Module - 1: Essentials of Python Programming 12 Hrs Introduction to Python - Features of Python - Python Interpreter and Running Structures an Sequences - Functions - Files - Exception Handling - Object Oriented Paradigms. Visualization with Quality - 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universe Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks. 12 Hrs Introduction to pandas Data Structures - Data Analysis - Variables, not the pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basic Data Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor F			Course Outcomes					om	ain		<u> </u>		
CO1 Information concepts in pythological manifestical appropriate problem in the concepts in pythological appropriate in the problems. Cognitive K1 CO2 Understand the NumPy libraries and Apply to handle the data Cognitive K2 CO3 Understand the pandas libraries and Apply to handle the data Cognitive K2 CO4 Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualization Cognitive K2 CO5 Remember and Apply the R programming essentials for data science problems Cognitive K1 CO6 Illustrate and Apply the R programming data visualization and transformations Cognitive K2 * K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create W2 W2 Introduction to Python - Features of Python Programming 12 Hrs Introduction to Python - Flees - Exception Handling - Object Oriented Paradigms. Sequences - Functions - Files - Exception Handling on Dyton Interpreter and Running Structures and Sequences - Functions - Files - Exception Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universe Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randou Functions and Walks. 12 Hrs Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical	On suc	cessfi Reme	ul completion of this course, the studer	nts will a grammi	be able to	0: nlv				•			
CO2Understand the NumPy libraries and Apply to handle the dataCognitiveK2CO3Understand the pandas libraries and Apply to handle the dataCognitiveK2CO4Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualizationCognitiveK2CO5Remember and Apply the R programming essentials for data science problemsCognitiveK1CO6Illustrate and Apply the R programming data visualization and transformationsCognitiveK2* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateModule - I: Essentials of Python Programming12 HrsIntroduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling in Python12 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universa; Functions and Walks.Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universa; Functions and Walks.Natoperations - Files / Exception and Visualization in Python12 HrsModule - III: Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i 	CO1	for di	fferent problems	grunnin		pvy	Co	ogni	itive		K1		
CO3 Understand the pandas libraries and Apply to handle the data Cognitive K2 CO4 Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualization Cognitive K2 CO5 remember and Apply the R programming essentials for data science transformations Cognitive K1 CO6 Illustrate and Apply the R programming data visualization and transformations Cognitive K2 * K1 - Remember, K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create Module - I : Essentials of Python Programming 12 Hrs Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universes - Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks. Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations 12 Hrs Basic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas. Visualization in Python 12 Hrs Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations	CO2	Unde	rstand the NumPy libraries and Apply to h	andle th	e data		Co	ogni	itive		K2		
CO4 Recognize the pandas and Matplotlib libraries and Apply real time problems in data visualization Cognitive K2 CO5 Remember and Apply the R programming essentials for data science transformations Cognitive K1 CO6 Illustrate and Apply the R programming data visualization and transformations Cognitive K2 * K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create Module - I : Essentials of Python Programming 12 Hrs Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universis Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks. 12 Hrs Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations 12 Hrs Basic Data Wrangling - Basic Data Aggregation and Visualization in Python 12 Hrs Basic Data Wrangling - Basic Data Aggregation - Working with Time Sites - Hig Performance of pandas. 12 Hrs Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting id	CO3	Unde	<i>rstand</i> the pandas libraries and <i>Apply</i> to ha	andle the	e data		Co	ogn	itive		K2		
COS Remember and Apply the R programming essentials for data science problems Cognitive K1 CO6 Illustrate and Apply the R programming data visualization and transformations Cognitive K2 * K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 12 Hrs Introduction to Python - Features of Python Programming 12 Hrs Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures and Sequences - Functions - Files - Exception Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universes Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks. 12 Hrs Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations 12 Hrs Basic Data Wrangling - Basic Data Aggregation and Visualization in Python 12 Hrs Basic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas. 12 Hrs Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib. 12 Hrs Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - In	CO4	Recog proble	gnize the pandas and Matplotlib libraries a tems in data visualization	and App	<i>ly</i> real tim	ie	Co	ogni	itive		K2		
CO6Illustrate and Apply the R programming data visualization and transformationsCognitiveK2* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateModule - I : Essentials of Python Programming12 HrsIntroduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling - Object Oriented Paradigms.12 HrsModule - II : Data Handling in Python12 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universe 	CO5	<i>Reme</i> proble	<i>mber</i> and <i>Apply</i> the R programming essenters	ntials for	data scier	nce	C	ogni	itive	K1			
 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create Module - I : Essentials of Python Programming 12 Hrs Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling - Object Oriented Paradigms. Module - II : Data Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universe: Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randon Functions and Walks. Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations Module - III : Data Aggregation and Visualization in Python 12 Hrs Basic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas. Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib. Module - IV : R Programming Essentials for Data Analysis Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables. Module - V : Data Visualization and Transformation with R 12 Hrs Basic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dolvr - Exploratory Data Analysis 	CO6	<i>Illusti</i> transf	<i>rate</i> and <i>Apply</i> the R programming data vi ormations	sualizati	ion and		C	ogni	itive	e K2			
Module - I : Essentials of Python Programming12 HrsIntroduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling - Object Oriented Paradigms.12 HrsModule - II : Data Handling in Python12 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universa Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks.10 HrsIntroduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations12 HrsModule - III : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig 	* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create												
Introduction to Python - Features of Python - Python Interpreter and Running Structure Libraries for Data Analysis - Variables, Values and Data Types - Data Structures an Sequences - Functions - Files - Exception Handling - Object Oriented Paradigms. Module - II : Data Handling in Python 12 Hrs Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universe Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randon Functions and Walks. - Universe - Randon Functions - Reading and Writing the Data - Handling Missing Data - Basis Data Transformations Module - III : Data Aggregation and Visualization in Python 12 Hrs Basic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas. - Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib. 12 Hrs Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basis Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables. 12 Hrs Basic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualization with ggplot2			Module – I : Essentials of Pythor	1 Prog	rammir	ıg				1	2 Hr	S	
Module - II : Data Handling in Python12 HrsNumerical Python (NumPy) arrays - Multidimensional Array Computations - Universe Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks.Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data Transformations12 HrsModule - III : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.12 HrsVisualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting in Matplotlib.12 HrsModule - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables.12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualization with dplyr - Exploratory Data Analysis12 Hrs	Introc Libra Seque	duction ries f ences	n to Python - Features of Python - or Data Analysis - Variables, Valu - Functions - Files - Exception Handlin	Python es and 1g - Obj	Interpre Data T ect Orier	ter ypes nted	and s - Par	l Ru Da adi	unnin ata S ¹ gms.	g Sti tructi	ructu 1res	re - and	
Numerical Python (NumPy) arrays - Multidimensional Array Computations - Universi Functions - Array Oriented Programming - File I/O - Linear Algebraic Functions - Randor Functions and Walks.Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data TransformationsModule - III : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.12 HrsVisualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib.12 HrsModule - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Data Tables.12 HrsModule - V : Data Visualization and Transformation with R12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Data Transformation with dplyr - Exploratory Data Analysis	1		Module - II : Data Handling	; in Py	thon				0	1	2 Hr	s	
Introduction to pandas Data Structures - Data Manipulation with pandas Objects - panda Objects for statistical methods - Reading and Writing the Data - Handling Missing Data - Basi Data TransformationsModule - III : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib.12 HrsModule - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables.12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis12 Hrs	Nume Funct Funct	erical tions - tions a	Python (NumPy) arrays - Multidin Array Oriented Programming - File nd Walks.	nension I/O - I	al Array Linear Al	v Co lgeb	omj raic	puta 2 Fu	tions Inctio	- U ns -	Jnive Rane	ersal dom	
Module - III : Data Aggregation and Visualization in Python12 HrsBasic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.Series - Hig Performance of pandas.Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting is Matplotlib.12 HrsModule - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables.12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis12 Hrs	Introc Objec Data '	luction ets for Transt	n to pandas Data Structures - Data statistical methods - Reading and Write formations	Manipu ting the	llation w Data - H	ith land	pan ling	idas g M	Obje issing	ects g Dat	- pai a - B	ndas asic	
Basic Data Wrangling - Basic Data Aggregation - Working with Time Series - Hig Performance of pandas.Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting i Matplotlib.Module - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables.12 HrsModule - V : Data Visualization and Transformation with R12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis	N	lodul	e - III : Data Aggregation and Vi	sualiz	ation ir	n Py	/th	on		1	2 Hr	S	
 Visualization with Matplotlib - Simple Line Plots - Simple Scatter Plots - Visualizing Errors Density and Contour Plots - Histograms, Binning and Density - Three Dimensional plotting in Matplotlib. Module - IV : R Programming Essentials for Data Analysis Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - Basi Plots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import Data Manipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables. Module - V : Data Visualization and Transformation with R H2 Hrs Basic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis 	Basic Perfo	Data rmanc	Wrangling - Basic Data Aggrega e of pandas.	tion -	Working	y w i	ith	Tir	ne S	eries	- H	ligh	
Module - IV : R Programming Essentials for Data Analysis12 HrsIntroduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - BasiPlots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import DataManipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables - Sorting Data Frames and Data Tables12 HrsModule - V : Data Visualization and Transformation with R12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis	Visua Densi Matp	alizatio ity and lotlib.	on with Matplotlib - Simple Line Plots d Contour Plots - Histograms, Binning	s - Simj and Do	ple Scatte ensity - T	er Pl Thre	lots e D	- V Dime	visual ensior	izing nal pl	Erro ottin	ors - ig in	
Introduction to R - Features of R - Data Types - Pipes - Vector Arithmetics - Indexing - BasePlots - Conditional Expressions - Functions - Loops - Iterations and Recursions - Import DataManipulating Data Frames and Data Tables - Sorting Data Frames and Data Tables.Module - V : Data Visualization and Transformation with R12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis		Modu	le - IV : R Programming Essentia	als for	Data A	nal	lys	is		1	2 Hr	S	
Module - V : Data Visualization and Transformation with R12 HrsBasic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis	Introc Plots Manij	luction - Cono pulatir	n to R - Features of R - Data Types - I ditional Expressions - Functions - Loo ng Data Frames and Data Tables - Sort	Pipes - ps - Iter ing Dat	Vector A rations ar a Frames	rith nd R and	me lect l Da	tics ursic ata 7	- Ind ons - Fable	exing Impo s.	g - B ort Da	asic ata -	
Basic Statistical Computing - Data Wrangling : Tibble, Tidy - Visualization with ggplot2 Visualizing Data Distributions - Data Transformation with dplyr - Exploratory Data Analysis	N	Aodul	e - V : Data Visualization and T	ransfo	rmation	1 W	ith	R		1	2 Hr	s	
	Basic Visua												

		Lecture	Tutorial	Practical	Total								
		45	15	0	60								
	Refe	rence Books											
1.	1. Wes McKinney. (2022). Python for Data Analysis, Third Edition, O'Reilly.												
2.	2. Allen B. Downey. (2021). <i>Think Python</i> , Second Edition, O'Reilly.												
3.	Jake Vanderplas. (2022). Python Data Science Handbook: Essential Tools for Working with Data, Second Edition, O'Reilly.												
4.	Hadley Wickham, Garrett Grolemund. (2023). <i>R for Data Science</i> , Second Edition, O'Reilly.												
5.	5. Rafael A. Irizarry. (2019). Introduction to Data Science : Data Analysis and Prediction Algorithms with R.												
	Web	References											
1.	NPTEL Course : <i>Python for Data Science</i> https://onlinecourses.nptel.ac.in/noc22_cs3	by Prof. Ragun 2/preview	athan Rengas	amy, IIT Mad	ras,								
2.	Couresera: Applied Data Science with Pyth science-python	non, <u>https://ww</u>	w.coursera.or	g/specializatio	ons/data-								
3.	Coursera – Google : Crash Course on Pyth	on, <u>https://ww</u>	w.coursera.or	g/learn/pythor	n-crash-course								
4.	Udemy : Statistics for Data Analysis Using	<i>R</i> , <u>https://ww</u>	w.udemy.com	n/course/statis	tics-using-r/								
5.	5. Coursera – Google : Data Analysis with R Programming, <u>https://www.coursera.org/learn/data-analysis-r</u>												
6.	Coursera – IBM : Data Analysis with R, htt	tps://www.cou	sera.org/learn	n/data-analysis	<u>s-r</u>								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	3
CO2	3	2	2	1	3	3	3	1	2	3
CO3	3	2	2	1	3	3	3	1	2	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	2	3
Total	18	15	15	6	15	17	17	6	15	18
Relativity	$: 0 \rightarrow$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation

Cou	rse				Domain	Но	ours	; / W	/eek	Ma	rks		
Coc	le	Course Name		Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDS	104	ADVANCED ALGORITH and DATA STRUCTURE	MS ES	4	4:0:0	3	1		4	50	50	10 0	
Pre-req	uisite	Basics of Linear Algebra, Al	lgorit	hms an	d Data	Stru	ucti	ure					
		Course Outcomes	5						- !				
On suc	cessf	ul completion of this course, the	stude	nts will I	be able to	0:		om	ain	L	1		
CO1	<i>Reme</i> algori	<i>mber</i> and <i>Understand</i> the vital con thms and its performance notations	cepts a	ind notat	ions of		Co	ogni	tive		K1		
CO2	<i>Interp</i> algori	<i>bret</i> the <i>Utilize</i> the appropriate data thms	structu	res whil	e develop	ing	C	ogni	tive		K2		
CO3	<i>Under</i> algori	rs <i>tand</i> and <i>Employ</i> the advanced re thms	ecursive	e techniq	jues in		C	ogni	tive		K2		
CO4	Cogn effect	<i>ize</i> the advanced design and analysi ive and efficient algorithm develop	is appro ment	oaches to	o develop	the	C	ogni	tive		K2		
CO5	Analy referr	ze the behaviour and performance of ze to their strengths and weakness	of give es	n algorit	hms,		C	ogni	tive		K4		
CO6	Refer proble	and <i>Apply</i> polynomial and non-po	lynomi	ial soluti	ions for ne	ew	C	ogni	tive		K3		
* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K									te				
	Module – I : Role of Algorithms In Computing 12 Hrs												
Introd of Fu Algor Priori	duction inctior rithms ity Qu	n to Algorithms - Psuedo Codes ns - Asymptotic Notations - Sp - Elementary Data Structures - eues Hash Tables - Sets and Dis	- Effic pace co Array joint S	ciency o omplexi based I et Unio	f algorith ty and T Data Stru n - Grapl	nms Time ctur ns.	, Ap e co res -	orio omp · Tre	ri ana lexity ees -	lysis / - D Dicti	, Gro esigi onari	wth ing ies -	
	_	Module - II : Advanced R	lecurs	sive A	nalysis					1	2 Hr	S	
Divid Quicl	le and c Sort	Conquer - Binary Search - Fin - Selection Sort - Strassen's Mat	nding t trix Mu	he Max ultiplica	timum A tions - Q	nd uic	Mir k H	nimu ull A	ım - Algor	Merg ithm	ge So	ort -	
	Modu	ıle - III : Advanced Design	and A	Analys	is Tech	nic	que	s		1	2 Hr	5	
Elem with Short	ents o Deadl est Pa	f Dynamic - Programming Gree ines - Minimum Cost Spanning ths - Aggregate analysis.	edy M g Tree	ethod - s - Sin	Knapsac gle Sour	ce S	Prob Sho	lem	- Jo Patł	b Sea 1s	queno All-P	cing 'airs	
		Module - IV : Backtrad	cking	Analy	ysis					1	2 Hr	5	
Binar Conn Subse proble	Binary Tree Traversal and Search Techniques - Techniques for Graphs (BFS and DFS) - Connected Components and Spanning Trees - Backtracking - N-Queens problem - Sum of Subsets - Hamiltonian Cycles - Knapsack Problem - Branch and Bound Traveling Salesman problem.												
	Μ	odule - V : NP-Completenes	ss and	l Appı	roximat	ion	IS			1	2 Hrs	s	
Polyn Probl	omial em - A	Time – Polynomial Time Ver Assignment problem - Traveling	ificatio Salesn	on - NF nan pro	Comple blem - Jo	ete 1 ob S	Pro che	blen duli	ns - ` ng Pr	Verte oble	ex Co n.	over	
			Leo	ture	Tutoria	al	Ρ	ract	ical	-	Fotal	I	
			4	15	15			0			60		
		Refe	rence l	Books									

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Wes McKinney. (2022). *Introduction to Algorithms*, Fourth Edition, MIT Press.
- 2. Anany Levitin. (2017). Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education.
- 3. Robert Sedgewick and Kevin Wayne. (2015). *Algorithms*, Fourth Edition, Pearson Education, Inc.
- 4. Steven S. Skiena. (2020). The Algorithm Design Manual, Third Edition, Springer.
- 5. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran. (2019). *Computer Algorithms/C++*, Second Edition, Orient Blackswan.
- 6. Dr. S. Sridhar. (2014). Design and Analysis of Algorithms, Oxford University Press.
- 7. Marcello La Rocca. (2021). Advanced Algorithms and Data Structures, Manning Shelter, Island.

Web References

- 1. NPTEL Course : *Python for Data Science* by Prof. Ragunathan Rengasamy, IIT Madras, <u>https://onlinecourses.nptel.ac.in/noc22_cs32/preview</u>
- 2. Couresera: Applied Data Science with Python, <u>https://www.coursera.org/specializations/data-science-python</u>
- 3. Coursera Google : Crash Course on Python, <u>https://www.coursera.org/learn/python-crash-course</u>
- 4. Udemy : Statistics for Data Analysis Using R, https://www.udemy.com/course/statistics-using-r/
- 5. Coursera Google : *Data Analysis with R Programming*, <u>https://www.coursera.org/learn/data-analysis-r</u>
- 6. Coursera IBM : Data Analysis with R, https://www.coursera.org/learn/data-analysis-r

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	2	3	3	1	2	2	3	2	3	2
CO2	2	3	3	1	2	2	3	2	3	2
CO3	2	2	2	1	3	3	3	2	2	3
CO4	2	2	2	1	3	3	2	2	3	3
CO5	2	3	3	1	2	3	3	2	3	3
CO6	2	3	3	1	2	3	3	2	2	2
Total	12	16	16	6	14	16	17	12	16	15
Relativity	$\cdot 0 \rightarrow$	No relatio	n 3-	→ Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow I \text{ ow}$	relation

Cour	rs 0				Domain	Но	ours	; / W	/eek	Ma	k. Ma	irks	
Cod	le	Course Name	Cred	its	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDS	105	ADVANCED DATABAS MANAGEMENT SYSTEN	SE MS		4:0:0	3	1		4	50	50	10 0	
Pre-req	uisite	Basic Algebra, Data Structu	ires and D)at	abase Sy	yste	em	Coi	ncept	ts			
On suc	cessfi	Course Outcomes ul completion of this course, the	students w	rill I	be able to	o:	D	om	ain	L	Level		
CO1	<i>Descr</i> the ev	<i>ibe</i> the need of real time database volution of database development pr	e manageme rocess	nt	and <i>Cont</i>	rast	Co	ogni	itive		K1		
CO2	Illusti	rate and Implement the database me	odels and de	esig	<u>ș</u> n		Co	ogni	itive	K1			
CO3	Disco	ver and Device the various database	e languages				Co	ogni	itive	K3			
CO4	<i>Interp</i> archit	<i>pret</i> and <i>Correlate</i> The data consistent ectures	ency and dif	fer	ent databa	ise	C	ogni	itive		K2		
CO5	Disco	ver and Defend the post relational of	database tecl	hnc	ologies		Cognitive K2						
CO6	Unde	rstand and Apply the non-relational	database te	chr	nologies		Co	ogni	itive		K2		
* K1 -F	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create												
	Module - I : Data Management											S	
Inform Data Datab Organ	matior is a B base I	n Systems and Databases - Relat usiness Issue – Database Archit Development Process – SQL of Data Management	ionship Bet ecture of a Databases	twe n I	een Information nformation Big Dat	mat on S ta -	ion Syst - N	and em No	l Data – Ov SQL	a - N ervie Data	Ianag w of abase	ging the s –	
- organ		Module - II : Data	Modelin	g						1	2 Hr	s	
Data Mode for Da	Analy el – In atabas	rsis to Database – The Entity-Rel nplementation in the Graph Mose Design.	ationship N del – Enter	Ло pri	del – Imp ise wide	olen Dat	nent a A	tatic .rch	on in t itectu	the R re –	elatio Forn	onal nula	
		Module - III : Databa	se Langu	ag	ges					1	2 Hr	s	
Intera based Data	icting Lang Protec	with Databases – Relational Al guages – Embedded Languages - ction Issues.	gebra – Re – Handling	lat N	ionally C ULL Val	Com lues	ple	te L Inte	angu. grity	ages Cons	– Gı strain	raph its –	
	Mod	ule - IV : Data Consistency	and Syste	err	n Archit	ect	ure	5		1	2 Hr	S	
Multi Comp and A	ulti-user Operation – Data Transaction – Consistency in Massive Distribution comparing ACID and BASE – Processing of Homogeneous and Heterogeneous Data and Access Structure – Layered Architecture – Use of Different Storage Structures.											a – rage	
Module - V : Post-Relational and NoSQL Databases											2 Hr	S	
Post-Re Multidi Databa – Key- Databa	elatior imensi ses – I Value ses.	nal Databases: Limits of SQL ional Databases – Data Wareho Fuzzy Databases. NoSQL Datab e Stores – Column-Family Store	– Federate ouse – Ob ases : Deve es – Docur	ed jec elo ne	Databas et-Relatio pment of nt Stores	es - nal No - 2	– T Da on-ro XM	`emj itaba elati IL I	poral ases - ional Databa	Data – Kn Tech ases	abase owle nolo – Gi	es – edge gies raph	
			Lecture		Tutoria	al	P	ract	ical	-	Fotal	1	
	45 15 0										60		

	Reference Books
1.	Andreas Meier and Michael Kaufmann. (2019). SQL & NoSQL Databases : Models, Languages, Consistency Options and Architectures forBig Data Management, Eighth Edition, Springer Vieweg.
2.	Keith Gordon. (2022). <i>Principles of Data Management</i> , Third Edition, British Computer Society Learning & Development Ltd.
3.	Oscar Diaz and Mario Piattini. (2000). Advanced Database Technology and Design, IEEE - Artech.
4.	Abraham Silberschatz, Henry F Korth, and S Sudarshan. (2015). <i>Database System Concepts</i> , Sixth Edition, McGraw-Hill International.
5.	Ramez Elmasri, and Shamkant B Navathe. (2017). <i>Fundamental of Database Systems</i> , Seventh Edition, Pearson Education.
6.	C.J. Date, A. Kannan, and S. Swamynathan. (2016). <i>An Introduction to Database Systems</i> , Eighth Edition, Pearson Education.
7.	Ian Robinson, Jim Webber and Emil EifremGraph Databases, Second Edition, O'Reilly Media.
	Web References
1.	SQL- and NoSQL-Databases, https://sql-nosql.org/en/tutorial/
2.	Couresera - Google : <i>Foundations: Data, Data, Everywhere,</i> https://www.coursera.org/learn/foundations-data
3.	Couresera - Project : <i>Database Creation and Modeling using MYSQL Workbench</i> , <u>https://www.coursera.org/projects/database-creation-and-modeling-using-mysql-workbench</u>
4.	Couresera Project : Advanced Relational Database and SQL, https://www.coursera.org/projects/advanced-rdb-sql
5.	Alison : Advanced Diploma in Database Systems, <u>https://alison.com/course/advanced-diploma-in-database-systems</u>
6.	Udemy : <i>The Complete SQL and MySQL Course - From Beginner to Expert</i> , <u>https://www.udemy.com/course/introduction-to-sql23/</u>

7. Udemy : *MySQL and MySQL Workbench For beginners*, <u>https://www.udemy.com/course/mysql-and-mysql-workbench-for-beginners/</u>

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	2	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	2	1	2	3	3	1	3	3
CO5	3	3	2	1	2	3	3	1	3	2
CO6	3	3	2	1	2	3	3	1	3	2
Total	18	16	12	6	14	17	17	6	18	15
Relativity : $0 \rightarrow \text{No relation}$		n 3-	→ Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation	

Cour	~~~	Domain Hours / Week											
Code		Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS106		06 PYTHON and 06 R PROGRAMMING 2 2:0:0 LABORATORY			4	4	50	50	10 0				
Pre-req	uisite	Basic Python and R Program	nming, Proc	ess of D	ata	Sci	enc	e					
On suc	Course OutcomesDomainOn successful completion of this course, the students will be able to :Domain								L	Level			
CO1	Apply	the basics in python programming	in different pro	oblems		Co	ogni	itive		K3			
CO2	<i>Apply</i> the NumPy and pandas libraries to handle the data Cognitive												
CO3	Apply the pandas and Matplotlib libraries for data visualization Cognitive												
CO4	Annly	the R programming essentials for d	ata science pr	oblems		C	Joni	itive		K3			
CO5	Annh	the R programming data visualizati	on and transfe	rmations			- gin	itivo		N2			
005	Арріу			ormations			Jgin			K5 K2			
C06	Apply the R programming to deal the missing values Cognitive									K3			
* K1-H	* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create												
	LIST OF EXPERIMENTS												
EX. NO.	Name of the Experiment										Hours		
1	Python program to demonstrate the control and iterative statements									2			
2	Pytho	on program to print the first p roy	v of Pascal's	triangla					2				
<u> </u>	r yuic Pytho	on program to demonstrate variou	is types of ac	cessing t	he s	trin	σ		2				
5	Pytho	on program to demonstrate operat	tors	cessing ti		um	5		2				
6	Pytho	on program to demonstrate lists a	nd tuples							2			
7	Pytho	on program to demonstrate functi	ons and meth	ods					4				
8	Progr	ams using NumPy							4				
9	Progr	ams using Pandas							4				
10	Imple	ementation of Maclaurin series								4			
11	Progr	ams using Seaborn								4			
12	Programs using Matplotlib									4			
13	R program to demonstrate vector manipulations									2			
14	R program to demonstrate matrix and array operations								2				
15	Operations using data frame in R								2				
16	R program to implement the functions								2				
17	Drawing scatter plot, box plot, violin plot, dot plot, bar plot, line plot								4				
18	R program to implement the geometric shapes									4			
19	R program to implement data transformations												
20	R pro	gram for finding missing values								4			
Lecture Tutorial Practical										Fotal			

60 60			
		 60	60

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	2	3	3	1	2	2	3	1	3	3
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	3	3
Total	17	16	16	6	14	17	17	6	18	18
Relativity : $0 \rightarrow \text{No relation}$		on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow \text{Low relation}$		

COs - POs / PSOs Articulation Matrix

Department of CSA | M.Sc. Data Science Curriculum (2023-2024)

Cour	'S P	Max. Mar		rks								
Code		Course Name	Credits	C : P : A	L	т	Ρ	Tot.	CIA	ESE	Tot	
YDS	107	ADVANCED DATABASE MANAGEMENT SYSTEMS LABORATORY	5 2	2:0:0			4	4	50	50	10 0	
Pre-requisite MySQL Workbench and Neo4j												
Course OutcomesDomainOn successful completion of this course, the students will be able to :Domain								L	Level			
CO1	<i>Recall</i> database models and develop database management skills Cognitive											
CO2	<i>Relate</i> the data transactions and data normalization techniques Cognitive									K3		
CO3	Disco	ver data table creation and it operation	nal methods			Co	ogni	itive		K3		
CO4	Apply	the flow control stock maintenance	e procedure	es		Co	ogni	itive		K3		
CO4	Use tł	ne NoSQL databases concepts in va	arious scena	arios		Co	ogni	itive		K3		
CO5	<i>Transfer</i> the ideas on how to design databases with Workbench and Cognitive Cypher						itive		K3			
* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					te							
LIST OF EXPERIMENTS												
Ex. No.	Name of the Experiment								Hours			
1	Database Creation and Data Definition Operations								4			
2	Querying in the Database								4			
3	Transaction Management									4		
4	Norm	nalization							4			
5	Mail	Table Creation and Retrieval of In	formation						4			
6	View Creation and Manipulation									4		
7	Table Creation and Manipulation									4		
8	Flow Control Management									4		
9	Cursors, Joins, Triggers and Functions								4			
10	Stored Procedure and Stock Maintenance									4		
11	NoSQL - Key Value Store									4		
12	NoSQL - Column Database									4		
13	NoSQL - Graph Database									4		
14	NoSQL - Document Database									4		
15	Working NoSQL with Workbench and Cypher											
Lecture Tutorial Practical										Fotal		
60 60												
-------	--	--------	----									
		 60	60									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity	$: 0 \rightarrow$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Cour	rso				Domain	Но	ours / Week Max. Mar					irks
Cod	le	Course Name	Cred	its	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	SE1	INTERPERSONAL and DELIVERING SKILLS	l 2		2:0:0	1	1		2	60	40	10 0
Pre-req	uisite	Basic English Communicati	on									
		Course Outcomes	;					om	ain		ava	1
On suc	cessfu	ul completion of this course, the	students w	ill á	able to :				am			•
CO1	acade	municate in clear, concise and corre	ct manner if	SC	ocial and		C	ogn	itive		K3	
CO2	Impro	we listening comprehension and cri	tical thinkin	g a	bility		C	ogn	itive		K3	
CO3	Write summ	different types of reports and SoP varizing and editing techniques	with better in	ite	rpretative,	,	C	ogn	itive	K3		
CO4	Prepa	re an effective resume and interpret	t the skills				C	ogn	itive		K3	
CO5	<i>Gain</i> discus	the productive professional skills the sion skills	rough intra	anc	d inter gro	up	C	ogn	itive	K3		
CO6	Acqui to the	<i>re</i> productive professional and tech face interviews for employment	inical comm	ıni	ication ski	lls	C	ogn	itive	e K3		
* K1 -F	Remem	ber; K2 - Understand; K3 - Apply; k	(4 - Analyze)	K5	5 - Evaluat	:e; k	(6 - (Crea	ite			
	N	Iodule - I : Career Goals and	d Interpe	rso	onal Sk	ills	6			0	6 Hr	s
Short	term a	and long term career goals - Acti	ivity : SWC)T	Analysis	/ C	om	preł	nendi	ng sp	eech	es.
Interp Corpo	oerson orate)	al Communication in/with Grou - Activity : Role Plays/Mime/Sk	ips (Corpoi it.	ate	e Etiquet	te :	Jou	irne	y fro	m Ca	ımpu	is to
		Module - II : Listening a	nd Readir	g	Skills					0	6 Hr	s
Lister	ning to	Documentary - Activity : Critic	ally evalua	te	/ Review	a d	locu	me	ntary	/ TE	D Ta	lk.
Skim Paper	ming, ːs/Mag	Scanning, Intensive & Ex gazines/Scientific Texts.	tensive re	ad	ing -	Act	ivit	y :	Re	ading	g N	ews
		Module - III : Report Writin	ng and Edi	tiı	ng Skills	5				0	6 Hr	s
Langu	uage a	nd mechanics of writing report -	Activity :	Wı	riting a R	epo	ort/N	/lini	Proj	ect.		
Sumn	nariziı	ng the report - Activity: Abstract	, Executive	Sı	ummary,	Dig	gital	Sy	nopsi	s.		
Proof	Read	ing Sequencing - Activity: Editir	ng any give	n t	ext.							
	Ν	Module – IV : Interpreting an	ld Presen	ta	tion Sk	ills	6			0	6 Hr	s
Interp Résur Oral appro	oret da né Wr Preser opriate	ta in tables and graphs - Activity iting - Activity: Prepare an Elect ntation using digital tools - Act non-verbal cues	v : Transcoo tronic Résu tivity : Ora	lin me 1 p	g. é. presentati	ion	on	the	give	n top	oic us	sing
		Module - V : Interview and	Professi	on	al Skill	ls				0	6 Hr	s
Intrag Grout	group : o discu	interaction (avoid, accommodat ussion on a given topic.	e, compete	, (comprom	ise,	co	llab	orate) - A	ctivi	ity :
Place	ment/J	ob Interview - Activity: Mock I	nterview.									
Confl	ict Ma	nagement & Decision Making -	Activity: C	as	e analysi	s of	a c	hall	engir	ng Sc	enari	io.
			Lecture		Tutoria	al	Ρ	ract	ical	-	Fotal	

		15	15	0	30								
	Reference Books												
1.	Uma Narula. (2019). <i>Development Commun</i> Aanad Publication.	nication: Theor	y and Practic	e, Revised E	dition, Har-								
2.	Annette Capel and Wendy Sharp. (2013). <i>C</i> Cambridge University Press.	Cambridge Engl	ish: Objective	e First, Fourth	edition,								
3.	Emma Sue-Prince. (2013). <i>The Advantage:</i> First Edition, FT Press.	The 7 Soft Skil	ls You Need to	> Stay One St	ep Ahead,								
4.	Wood, J. T. (2016). Communication in Our	Lives, Cengage	e Learning, B	oston, USA.									
5.	Anderson, C. (2016). <i>TED Talks : The Office</i> Boston, Houghton Mifflin, New York.	cial TED Guide	to Public Spe	eaking, First I	Edition,								
6.	Kuhnke, E. (2015). Communication Essenti	als for Dummi	es, First Editio	on. John Wile	y & Sons.								
7.	Reference and Practice Book for Advanced University Press. UK.	Learners of En	glish, (2013).	Third Edition	n. Cambridge								
	Web	References											
1.	NPTEL Course : <i>Introduction to Profession</i> Kanpur, <u>https://onlinecourses.nptel.ac.in/no</u>	al Scientific Co c23_bt09/previ	ommunication <u>ew</u>	, By Prof. S. (Ganesh, IIT								
2.	NPTEL Course : <i>Communication Skills</i> , By <u>https://nptel.ac.in/courses/109104031</u>	Dr. T. Ravicha	undran, IIT Ka	anpur,									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	2	1	1	3	1	3	3	3		
CO2	2	1	1	3	1	3	3	3		
CO3	2	3	2	3	2	3	3	3		
CO4	2	3	2	3	2	3	3	3		
CO5	2	3	3	3	1	3	3	3		
CO6	2	3	3	3	1	3	3	3		
Total	12	14	12	18	8	18	18	18		
Relativity	$: 0 \rightarrow$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	/ledium re	lation	$1 \rightarrow Low$	relation

COs vs POs

SEMESTER - II

Cour	50				Domain	Но	ours	/ W	/eek	Ma	k. Ma	irks
Cod	e	Course Name	Cr	edits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	201	MACHINE LEARNING TECHNIQUES	j	4	4:0:0	4	1		5	50	50	10 0
Pre-req	uisite											
Onsuc	ressfi	Course Outcomes	students	s will i	he ahle ti	o .	D	om	ain	L	_eve	1
CO1	List of	ut the fundamental issues and persr	vectives of	f mac	hine learn	ing	C	Joni	itive		K1	
001				1 mac		mg		Jgin			111	
CO2	Defin	e the framework for building mach	ine learni	ng sys	stems		C	ogn	itive		KI	
CO3	<i>Comp</i> data p	<i>are</i> various linear models to find a oints	best-fit li	ne thr	ough a se	t of	Co	ogni	itive		K2	
CO4	<i>Apply</i> in ma	make use of genetic algorithms as chine learning	a tool for	featu	re selectio	on	Co	ogni	itive		K3	
CO5	<i>Exam</i> numb	<i>ine</i> various dimensionality reductions of input variables in the datasets	on techniq	ques to	o reduce t	he	Co	ogni	itive		K4	
CO6	<i>Expla</i> condit	<i>in</i> and construct the graphical mod tional dependence structure betwee	els to exh n random	ibit th varia	ie bles		Co	ogni	itive		K5	
* K1 - R	emerr	ber; K2 - Understand; K3 - Apply; I	K4 - Analy	/ze; K	5 - Evaluat	te; K	(6 - (Crea	ite			
		Module – I : Inti	roductio	n						1	2 Hr	s
Introdu Forms Learni	uction - Mac ng Py	to Machine Learning: History and chine Learning Categories: Framev thon Packages - Data Analysis Pacl	l Evolutio vorks for kages - M	n - A Build achin	rtificial Ir ing Mach e Learnin	ntelli ine [g Co	igen Lea ore I	ce E rnin Libra	Evolut g Sys [:] aries	tems-	Diffe Mac	erent hine
		Module – II : Fundamentals	of Mach	nine I	Learning					1	2 Hr	s
Funda Analys Learni	menta sis - S ng Pro	ls of Machine Learning: Scales of Supervised Learning:-Regression ocess Flow	Measurer - Supervi	ment ised I	- Feature Learning:-	Eng Cl	inee assii	ering ficat	g - Ex tion -	plora Uns	tory] uperv	Data 'ised
		Module - III : Diagno	sis and T	Funiı	ng					1	2 Hr	s
Model Bias a - Bagg	Diag nd Va ging - I	nosis and Tuning: Optimal Probab riance - K-Fold Cross-Validation - Boosting - Ensemble Voting - Stack	ility Cuto Stratified king - Hyp	off Po l K-Fo per pa	int - Rare old Cross- rameter T	Eve Val	ent idati 1g	or In ion ·	mbala - Ense	nced emble	Data Metl	set - hods
		Module – IV : Machine l	Learning	g Ana	lysis					1	2 Hr	s
Machin Descri Learni	ne Le ptive ng - F	arning Analysis: How to load M Statistics - Understand Your Data eature Selection for Machine Learn	Iachine I a with Vi iing	Learni isualis	ng Data ation - P	- U repa	Inde are	rsta You	nd Yo r Dat	our I a for	Data Mac	with hine
		Module – V : Machine I	Learning	, Proj	ects					1	2 Hr	s
Machin Machin	ne Lea ne Lea	arning Projects: Your first Machine arning Case Study Project - Binary	e Learning Classifica	g Proj tion N	ects in Py Machine L	rthor æarr	n Ste ning	ep-E Cas	By-Ste se Stu	y-Step - Regress e Study Projects		
			Lectu	ire	Tutori	al	Pi	ract	ical	-	Fotal	1
			45		15			0			60	
		Refe	rence Bo	oks								

- 1. Swamynathan, Manohar. Mastering Machine Learning with Python in Six Steps: A Practical Implementation Guide to Predictive Data Analytics Using Python. United States, Apress, 2019
- 2. Machine Learning Mastery With Python: Understand Your Data, Create Accurate Models, and Work Projects End-to-End. N.p., Machine Learning Mastery, 2016.

Web References

- 1. Oliver Theobald, "Machine Learning for Absolute Beginners: A Plain English Introduction", Third Edition, Independently Published, 2021.
- 2. Henderson, Matt. Machine Learning for Beginners 2019: The Ultimate Guide to Artificial Intelligence, Neural Networks, and Predictive Modelling (Data Mining Algorithms & Applications for Finance, Business & Marketing), Charlotte Publishing. 2019.
- 3. Fmello, Rodrigo, and AntonelliPonti, Moacir. "Machine Learning: A Practical Approach on the Statistical Learning Theory", Springer International Publishing, 2018.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	3
Co2	3	3	3	1	2	2	3	1	3	3
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
Total	18	16	16	6	14	16	16	6	18	18
D 1	0	NT 1.	2	TT' 11	1	0.1	۲ ۲ 1'	1	1 . T	1.1

COs - POs / PSOs Articulation Matrix

Relativity: $0 \rightarrow$ No relation $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation $1 \rightarrow$ Low relationGrade Scale: $01 - 06 \rightarrow 1$ | $06 - 09 \rightarrow 2$ | $09 - 15 \rightarrow 3$

Cou	rs o			Domain	Ho	ours / Week		/eek	Max. Ma		arks		
Coc	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	202	ADVANCED STATISTICAL METHODS - II	5	5:0:0	4	1		5	50	50	10 0		
Pre-req	uisite												
On suc	cessf	Course Outcomes ul completion of this course, the stude	nts will i	be able t	o :	D	om	ain	L	_eve	ļ		
CO1	<i>Reme</i> scienc	<i>mber</i> and <i>Understand</i> the fundamental coce	oncepts o	of data		Co	ogn	itive		K1			
CO2	Descr	<i>ibe</i> the data science process				C	ogn	itive	K1				
CO3	<i>Explo</i> the M	bre and Visualize the data by various techn fodels	niques ar	nd <i>Evalua</i>	<i>uluate</i> Cognitive K2								
CO4	<i>Illusti</i> foreca	<i>rate</i> the recommendation engines and <i>Disc</i> asting systems	cover the	e time Ser	ies	C	ogn	itive		K2			
CO5	Unde detect	<i>rstand</i> and <i>Apply</i> the suitable feature selection techniques	ction and	l anomaly		C	ogn	itive	K2				
CO6	Apply	suitable data science tools in various app	lications			Co	ogn	itive	ve K2				
* K1 - F	Remen	hber; K2 - Understand; K3 - Apply; K4 - An	alyze; K	5 - Evaluat	te; K	(6 - 0	Crea	te					
		Module - I : Introduction to I	Data So	cience					1	5 Hr	S		
Data Venn Data Algoi Scien	Sciend diagr - Dat rithms ce - D	ce Definitions and Needs - Volume an am of Data science - Facets of Data a Science Process - Associated Fiel- for Data Science - Business Intellige Databases for Data Science.	d Dime - Data ds - Cl ence and	nsions - (and Vari assificati l Data So	C's iable on cien	and e T of ce	ype Dat - Co	s in E s - Fo a Sci ompo	Data Sour I ence nents	Scier Level Tas s of 1	ice - ls of ks - Data		
	I	Module - II : Data Science Process	s and I	Evaluat	ion				1	5 Hr	S		
Data Data Univa - Vis Evalu	- Cau Mode ariate sualizi ation.	sation Versus Correlation - Overview eling - Applications - Knowledge - 0 and Multivariate Data Exploration - U ng High Dimensional Data - Road	of Data Objectiv Inivariat dmap f	a Science ves of D te and M for New	Pro ata ultiv Da	Ex Ex vari	ss - ploi ate Exp	Data ration Data plorat	Prep - D Visu ion	arati atase aliza - M	on - ets - ation odel		
	Mod	ule - III : Recommendation and l	Foreca	sting Sy	yste	em	S		1	5 Hr	S		
Recon Filter Forec Evalu	mmen ing - asting ation.	dation Engines and its Needs - Types Content-Based Filtering - Hybrid R g - Machine Learning Methods fo	of Rec Recomm r Time	ommenda ienders - e Series	atio Ta Fo	n E axor reca	ngin nom astin	nes - iy of ig -	Colla Tim Perf	abora le Se forma	ative eries ance		
	Мос	lule - IV : Feature Selection and	Anom	aly Det	ecti	ion			1	5 Hr	'S		
Class Theor Anon Densi	ification y Ba haly D ty Bas	on of Feature Selection Methods - H sed Filtering - Chi-Square-Based Fi Detection - Anomaly Detection Tech sed Outlier Detection - Local Outlier F	Principa iltering niques Factor (L	l Compo - Wrapj - Distanc LOF).	onen per xe E	it A Ty Base	nal pe d (ysis - Featu Dutlie	- Info ire S r De	orma elect tectio	ition tion. on -		
	Ν	Module - V : Data Science Tools a	nd Ap	plicatio	ons				1	5 Hr	S		

Introduction to Data Science Tools - SAS - Apache Flink - Apache Spark - KNIME - BigML -Excel - RapidMiner - Tableau - Matplotlib - TensorFlow - Weka - Matlab. Applications of Data Science - Hands-on with RapidMiner - Collecting and Analyzing Twitter Data - Collecting and Analyzing YouTube Data.

	Lecture	Tutorial	Practical	Total
	60	15	0	75
Refe	rence Books			

- 1. Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare. (2022). Fundamentals of Data Science, First Edition, CRC Press.
- 2. Vijay Kotu and Bala Deshpande. (2019). Data Science : Concepts and Practice, Second Edition, Morgan Kaufmann.
- 3. Davy Cielen, Arno D. B. Meysman and Mohamed Ali. (2016). Introducing Data Science : Big Data, Machine Learning, and more, using Python Tools, Manning Publications Co., Island.
- 4. Sinan Ozdemir, (2016). Principles of Data Science Packet Publishing.
- 5. Sanjiv Ranjan Das, (2016). Data Science : Theories, Models, Algorithms, and Analytics, eBook.

Web References

- 1. MIT Course : Statistical Thinking And Data Analysis, https://ocw.mit.edu/courses/15-075jstatistical-thinking-and-data-analysis-fall-2011/download/
- 2. Alison Course : Data Science Regression and Clustering Models, https://alison.com/course/datascience-regression-and-clustering-models
- 3. Udemy Course : Data Science, Machine Learning, Data Analysis, Python & R, https://www.udemy.com/course/data-science-machine-learning-data-analysis-python-r/
- 4. NPTEL Course : Data Science For Engineers, By Prof. Ragunathan Rengasamy, Prof. Shankar Narasimhan, IIT Madras, https://onlinecourses.nptel.ac.in/noc23 cs97/preview
- 5. Coursera : Data Science Math Skills, Offered by Duck University, https://www.coursera.org/learn/datasciencemathskills
- 6. Coursera : Introduction to Data Science Specialization, Offered by IBM, https://www.coursera.org/specializations/introduction-data-science

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	3	1	3	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	15	15	6	15	17	17	6	18	16
Relativity	$: 0 \rightarrow$	No relatio	n 3-	\rightarrow Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Relativity : $0 \rightarrow \text{No relation}$ Grade Scale : $01 - 06 \rightarrow 1 \mid 06 - 09 \rightarrow 2 \mid 09 - 15 \rightarrow 3$

Cour	~			Domain	Н	ours / Week Max. Ma					ırks		
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	203	BIG DATA ANALYTICS	5 3	3:0:0	3			3	50	50	10 0		
Pre-req	uisite												
On suc	cessf	Course Outcomes	students will	be able t	o :	D	om	ain	L	_eve	I		
CO1	Unde Appli	<i>rstand</i> about basics of Big Data, Teccations in various domains.	chnologies and	l		C	ogni	itive		K2			
CO2	Unde	rstand cloud and big data and its ap	plications			C	ogni	itive		K2			
CO3	<i>Unde</i> Syster	<i>rstand</i> the foundations of Hadoop as m. Design of HDFS and file-based of	nd Hadoop Dis lata structures.	stributed H	File	С	ogni	itive		K2			
CO4	Analy	ze the working of Map Reduce and	YARN for job	scheduli	ng.	C	ogni	itive	K2				
CO5	<i>Evalu</i> data n comm	vate the need and fundamentals of H nodel for different applications. Unc nands in HiveQL, Pig and Pig Latin	Base. Apply the lerstand the ba	ne Cassan sic	dra	C	ogni	itive		K2			
CO6	<i>Analy</i> databa visual	<i>ze</i> the basic concepts and need for Gases and retrieve records using Neo- ization and its need.	Graph database 4j. Understand	es, create the data		C	ogni	itive	ive K2				
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; K	4 - Analyze; K	5 - Evaluat	te; k	(6 -)	6 - Create						
		Module – I Introducti	on to Big Dat	a					1	2 Hr	s		
Introd examp credit medic intelli	uction oles of risk r ine – gence	: What is big data – why big data – big data – Web analytics - big data nanagement – big data and algori advertising and big data – big dat – crowd sourcing analytics.	convergence o and marketing thmic trading ta technologies	f key tren g – fraud a - big dat s - cloud	ds - and 1 a an and	uns big o nd l l big	truc data nealt g da	tured - risk hcare ta– m	data - and - bi nobile	– indu big da g dat busi	istry ata – ta in ness		
		Module – II H	Iadoop						1	2 Hr	s		
Histor Data v seriali	y of H with H zation	Hadoop - The Hadoop Distributed adoop - Design of HDFS – HDFS – Avro – file-based data structures.	File System – concepts - Hao	compone loop I/O -	ents – da	of 1 ta ii	Hade	oop - rity –	Anal comp	yzing pressi	; the on –		
		Module – III Ma	pReduce						1	2 Hr	s		
MapR MapR schedu	educe educe uling –	: MapReduce workflows – unit test job run – classic Map-reduce – YA - shuffle and sort – task execution –I	s with MRUn ARN – failures MapReduce ty	it – test da s in classi pes – inpu	ata a c M it fo	and lap-1 rma	loca redu ts –	il tests ce and outpu	s – ar d YA t forn	natom RN – nats.	ıy of - job		
		Module – IV Hadoo	p Eco System						1	2 Hr	s		
HBase data m – Pig definit	e – dat nodel – Latin – tion – 1	a model and implementations – HI Cassandra examples – Cassandra cl - developing and testing Pig Latin s HiveQL data manipulation –HiveQI	Base clients – ients –Hadoop cripts. Hive – 2 queries-case	HBase ex integratio data types study.	amj on. l anc	ples. Cassandra – Cassan Pig – Grunt – pig data mo d file formats – HiveQL d					ndra odel data		
		Module – V Graph	n Databases						1	2 Hr	S		
Introd neo4j	uction - visua	- Neo4J - Key concept and charac lizations - neo4j - Cypher Query La	teristics -Modelinguage –data	eling data visualizat	for ion.	nec	04j -	Impo	orting	data	into		
			Lecture	Tutori	al	Ρ	ract	ical	-	Total			
			45 15 0 60										

Reference Books

- 1. Daimi, Kevin, Hamid R. Arabnia, Principles of Data Science. Ed. Springer, 2020.
- SinanOzdemir, Principles of Data Science: Mathematical Techniques and Theory to Succeed in Data-Driven Industries, Packt Publishing Limited, 2016.
- 3. Rik Van Bruggen, Learning Neo4j, Second Edition, PacktPubishers, 2014
- 4. Michael Minelli, Michelle Chambers, Ambiga Dhiraj, Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley, 2013
- 5. Prateek Joshi, "Artificial Intelligence with Python", Packt Publishing, 2017

Web References

- 1. https://onlinecourses.swayam2.ac.in/cec21_cs08/preview
- 2. https://www.tutorialspoint.com/artificial intelligence/index.htm
- 3. <u>https://www.coursera.org/learn/introduction-to-ai</u>
- 4. https://www.udacity.com/course/intro-to-artificial-intelligence--cs271

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	3	3	1	2	2	3	1	3	2
CO3	3	2	2	1	3	3	3	1	3	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	16	17	6	18	15

COs - POs / PSOs Articulation Matrix

Domain Hours / Wee									Max	к. Ma	rks
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	GE1	GEC - I DATA AND INFORMATION SECURITY	3	3:0:0	3			3	50	10 0	
Pre-req	uisite			•							
On suc	cessf	Course Outcomes	nts will i	be able to	o :	D	om	ain	L	.evel	
CO1Understand the basics of data and information securityCognitive											
CO2 Understand the concept of SDLC Cognitive											
CO3 Understand the legal, ethical and professional issues in information security Cognitive											
CO4	Unde differ	perstand the various authentication scher rent applications.	mes to s	simulate		C	ogni	itive		K2	
CO5	<i>Understand</i> various security practices and system security cognitive										
CO6	Unde applie	erstand the Web security protocols for a cations	E-Com	merce		C	ogni	itive	e K2		
* K1 - F	Remen	nber; K2 - Understand; K3 - Apply; K4 - Ana	alyze; K !	5 - Evaluat	te; k	(6 - (Crea	ite			
		Module - I : INTRODUC	CTION							9	
Histor Secur Secur	ry, W ity M ity an	That is Information Security. Critica odel, Components of an Information S d Access. The SDLC. The Security SD	l Chara System, DLC	acteristics Securing	s o g th	f Ir e C	nfor omp	matio ponen	on, N its, B	STIS	SSC cing
	109 001	Module - II : SECURITY INVE	STIGA	TION						9	
Need An C Confi	for S Overvi dentia	ecurity, Business Needs, Threats, Atta iew of Computer Security - Access ality policies, Integrity policies and Hyl	acks, Le s Contr brid pol	egal, Ethi rol Matr licies	ical ix,	anc Pol	l Pr licy	ofess -Secu	ional rity	Issu polic	es - cies,
N	Modu	le - III: DIGITAL SIGNATURE AN	D AUI	THENTI	CA'	ТІС)N			9	
Digita and t Proto	al Sig their cols -	nature and Authentication Schemes: Variants- Digital Signature Standard Applications - Kerberos -X.509 Direct	Digital ds-Auth ory Ser	signatur enticatio vices	e-D n:	igit Ove	al S ervie	Signat ew-	ure S Requ	Schei irem	mes ents
		Module - IV: E-MAIL AND IP	SECU	RITY						9	
E-mail and IP Security: Electronic mail security: Email Architecture -PGP – O Descriptions- Key management- Trust Model- S/MIME.IP Security: Overview- Arch ESP, AH Protocols IPSec Modes – Security association - Key management.											onal re -
		Module - V: WEB SECU	RITY							9	
Web Security: Requirements- Secure Sockets Layer- Objectives-Layers -SS communication-Protocols - Transport Level Security. Secure Electronic Transaction											

DS Verification-SET processing.											
	Lecture	Tutorial	Practical	Total							
	45	0	0	45							
Reference Books											
1. Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare. (2022). <i>Fundamentals of Data Science</i> , First Edition, CRC Press.											
2. Vijay Kotu and Bala Deshpande. (2019). <i>Data Science : Concepts and Practice</i> , Second Edition, Morgan Kaufmann.											
3. Davy Cielen, Arno D. B. Meysman and Mohamed Ali. (2016). <i>Introducing Data Science : Big Data, Machine Learning, and more, using Python Tools</i> , Manning Publications Co., Island.											
4. Sinan Ozdemir, (2016). Principles of Da	ta Science Packe	t Publishing.									
5. Sanjiv Ranjan Das, (2016). Data Science	: Theories, Mod	els, Algorithn	ıs, and Analyt	ics, eBook.							
W	eb References										
1. MIT Course : <i>Statistical Thinking And Da</i> <u>statistical-thinking-and-data-analysis-fall-</u>	<i>ta Analysis</i> , <u>http</u> 2011/download/	s://ocw.mit.ed	lu/courses/15-	<u>075j-</u>							
2. Alison Course : <i>Data Science - Regressio</i> science-regression-and-clustering-model	on and Clustering S	g Models, <u>http</u>	s://alison.com	/course/data-							
3. Udemy Course : <i>Data Science, Machine</i> https://www.udemy.com/course/data-scie	Learning, Data A	Analysis, Pyth <mark>rning-data-an</mark>	on & R, alysis-python	<u>-r/</u>							
 NPTEL Course : Data Science For Engin Narasimhan, IIT Madras, <u>https://onlineco</u> 	neers, By Prof. R	agunathan Re /noc23_cs97/j	engasamy, Pro preview	f. Shankar							
5. Coursera : <i>Data Science Math Skills</i> , Off https://www.coursera.org/learn/datascien	5. Coursera : <i>Data Science Math Skills</i> , Offered by Duck University, https://www.coursera.org/learn/datasciencemathskills										
6. Coursera : Introduction to Data Science . https://www.coursera.org/specializations	Specialization, O /introduction-dat	ffered by IBM a-science	1,								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	2	1	2	2	3	1	3	2
CO2	3	3	2	1	2	2	3	1	3	2
CO3	3	2	2	1	3	3	3	1	3	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	2	1	2	3	3	1	3	3
CO6	3	3	2	1	2	3	3	1	3	2
Total	18	16	12	6	14	16	17	6	18	15

COs - POs / PSOs Articulation Matrix

Relativity : $0 \rightarrow \text{No relation}$ $3 \rightarrow \text{Highly relation}$ $2 \rightarrow \text{Medium relation}$ $1 \rightarrow \text{Low relation}$ Grade Scale : $01 - 06 \rightarrow 1 \mid 06 - 09 \rightarrow 2 \mid 09 - 15 \rightarrow 3$

Domain H							Domain Hours / We					
Cour	se le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDSC	GE2	GEC - I BLOCK CHAIN TECHNOLOGIES	3	3:0:0	3			3	50	50	10 0	
Pre-req	uisite		I	I								
Course Outcomes Domain												
On successful completion of this course, the students will be able to :												
CO1 <i>Remember</i> and <i>Understand</i> the fundamental concepts of data science Cognitive												
CO2	Descr	<i>ibe</i> the data science process;				Co	ogni	tive		K2		
CO3	<i>Explo</i> the M	<i>re</i> and <i>Visualize</i> the data by various technodels	niques ar	nd <i>Evalua</i>	te	Co	ogni	tive		K2		
CO4	<i>Illusti</i> foreca	<i>rate</i> the recommendation engines and <i>Disc</i> usting systems	cover the	e time Ser	ies	Co	ogni	tive		K2		
CO5	Understand and Apply the suitable feature selection and anomaly detection techniques Cognitive											
CO6	Apply	suitable data science tools in various appl	lications			Co	ogni	tive	K2			
* K1 - R	lemer	nber; K2 - Understand; K3 - Apply; K4 - An	alyze; K	5 - Evaluat	te; k	(6 - (Crea	te				
		Module - I : Introduction to I	Data So	cience					ç) Hrs	;	
Data S Venn Data Algor Scient	Scienc diagr - Dat ithms ce - D	ce Definitions and Needs - Volume and am of Data science - Facets of Data a Science Process - Associated Field for Data Science - Business Intellige atabases for Data Science.	d Dime - Data ds - Cl ence and	nsions - (and Vari assificati l Data So	C's iabl on cien	and e T of 1 ice -	V'a ype: Data Co	s in E s - Fo a Sci ompor)ata S our L ence nents	Scien Level Tasl of I	ce - s of ks - Data	
	Ν	Module - II : Data Science Process	s and I	Evaluati	ion	_			ç) Hrs	;	
Data Data Univa - Vis Evalu	- Caus Mode triate a tualizi ation.	sation Versus Correlation - Overview ling - Applications - Knowledge - (and Multivariate Data Exploration - U ng High Dimensional Data - Road	of Data Objectiv Inivariat Imap fo	a Science ves of D te and M or New	Pro ata ulti Da	oces Exj vari ata	ss - plor ate Exp	Data ation Data olorat	Prep - D Visu ion	arati atase aliza - Mo	on - sts - tion odel	
	Mod	ule - III : Recommendation and l	Foreca	sting Sy	yste	ems	5		ç) Hrs	,	
Recor Filteri Forec Evalu	nmen ing - asting ation.	dation Engines and its Needs - Types Content-Based Filtering - Hybrid R - Machine Learning Methods fo	of Reco Recomm r Time	ommenda enders - Series	atio Ta Fo	n E axor reca	ngir 10m 1stir	nes - y of ng -	Colla Tim Perf	abora e Se forma	tive ries nce	
	Mod	lule - IV : Feature Selection and	Anoma	aly Det	ecti	ion			ç	9 Hrs	i	
Classi Theor Anom Densi	Classification of Feature Selection Methods - Principal Component Analysis - Information Theory Based Filtering - Chi-Square-Based Filtering - Wrapper Type Feature Selection Anomaly Detection - Anomaly Detection Techniques - Distance Based Outlier Detection Density Based Outlier Detection - Local Outlier Factor (LOF).											
	Ν	/lodule - V : Data Science Tools a	nd Ap	plicatio	ons	5			ç	9 Hrs	,	

Introduction to Data Science Tools - SAS - Apache Flink - Apache Spark - KNIME - BigML - Excel - RapidMiner - Tableau - Matplotlib - TensorFlow - Weka - Matlab. Applications of Data Science - Hands-on with RapidMiner - Collecting and Analyzing Twitter Data - Collecting and Analyzing YouTube Data.

Lecture	Tutorial	Practical	Total	
45	0	0	45	

Reference Books

- 1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security, Course Technology, 6th Edition, 2017.
- 2. Stallings William. Cryptography and Network Security: Principles and Practice, Seventh Edition, Pearson Education, 2017.

Web References

- 1. Harold F. Tipton, Micki Krause Nozaki, "Information Security Management Handbook, Volume 6, 6th Edition, 2016.
- 2. Stuart McClure, Joel Scrambray, George Kurtz, "Hacking Exposed", McGraw-Hill, Seventh Edition, 2012.
- 3. Matt Bishop, "Computer Security Art and Science, Addison Wesley Reprint Edition, 2015
- 4. Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography And network security, 3rd Edition, . McGraw-Hill Education, 2015.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	2	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	3	1	3	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	2	3
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	15	15	6	15	17	17	6	16	16
Delativity (0) No relation (2) Highly relation (2) Madium relation (1) Low relation										

COs - POs / PSOs Articulation Matrix

Relativity: $0 \rightarrow$ No relation $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation $1 \rightarrow$ Low relationGrade Scale: $01 - 06 \rightarrow 1$ | $06 - 09 \rightarrow 2$ | $09 - 15 \rightarrow 3$

Cou			Н	ours	/ W	/eek	Max. Mark				
Cou	de	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	GE3	GEC – I CRYPTOGRAPHY AND NETWORK SECURITY	3	3:0:0	3			3	50	50	10 0
Pre-rec	luisite										
On suc	ccessfi	Course Outcomes	nts will i	be able to	o <i>:</i>	D	om	ain	L	eve	I
CO1 <i>Recall</i> the fundamentals of networks security, security architecture, threats and vulnerabilities Cognitive											
CO2	Reme	ember mechanism of OSI architecture				Co	ogni	tive		K1	
CO2	<i>Explo</i> Confi	<i>ain</i> Symmetric Encryption principles an identiality	nd Mes	sage		Co	ogni	tive		K2	
CO3	Unde techn	erstand use of various Public-key Cryptiques for secure data transmission	tograph	ıy		Co	ogni	tive		K2	
CO4	Analyze essential approaches and techniques to ensure IP security and network management securityCognitive										
CO5	<i>Asses</i> Hash	<i>ss and build</i> the various Message Author Functions to provide message authenti	enticati	on and		Co	ogni	tive		K2	
* K1-	Remem	nber; K2 - Understand; K3 - Apply; K4 - Ana	alyze; K	5 - Evaluat	te; k	(6 - (Crea	te			
		Module - I : Introduction to cr	yptogr	aphy						9	
Introd Secur Secur techn mode crypt	duction rity, N rity at iques: ern cr analys	n to cryptography: Security trends – eed for Security at Multiple Levels, Se tacks, services and mechanisms OSI substitution techniques, transposition yptography: perfect security – info is.	Legal, curity I securit n techn rmatior	Ethical Policies – ty archite iques, st n theory	and - Me ectu ega	l Pr odel re - nog pro	ofes of Cl rapl	ssiona netwo lassica ny Fo et cry	al As ork so al en ounda ptos	pects ecuri cryp ations yster	s of ty – tion s of n –
	Modu	Ile- II : Symmetric Encryption and N	Messag	e Confid	ent	ialit	ty			9	
Symr Symr Opera Symr Distr	netric netric ation, netric ibutior	Encryption and Message Confider Block Encryption Algorithms, Stream Location of Encryption Devices, Encryption - Placement of Encryption n - Random Number Generation.	ntiality: n Ciphe Key I on Fun	Symme ers and R Distribution ction - T	etric C4 on Fraf	: E , Ci - (fic	ncr phe Con Cor	yption r Blo fiden nfiden	n Pr ck M tialit <u>y</u> tialit	incip Iode y U y -	oles, s of sing Key
		Module - III: Public-key Cry	ptogra	phy						9	
Publi Algor	c-key rithms	Cryptography: Public-Key Cryptogr , Digital Signatures, Key Management	raphy l	Principles	s, F	Publ	ic-ŀ	Key (Cryp	togra	ıphy
Module - IV: Message Authentication and Hash Functions										9	
Mess Funct Macs Infras	age A tions - - Au structu	uthentication and Hash Functions: A Message Authentication Codes - Hash thentication Applications - Kerberos re. Electronic Mail Security: Pretty Go	uthention Funct , x.509 od Priv	cation Re ions - Se Authent acy (PGI	equi cur tica P), S	ity o tion S/M	nent of H Se IM	s - A lash H rvice	uthe Funct Put	ntica ions olic	tion and Key
		Module - V: IP Secur	rity							9	

IP Security: IP Security Over view, IP Security Architecture, Authentication Header, Encapsulating Security Payload, and Combining Security Associations. Web Security: Web Security Considerations, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET). Network Management Security: Basic Concepts of SNMP, SNMPv1 Community Facility, SNMPv3

	Lecture Tutorial Practical										
	45 0 0										
Reference Books											
1. Stallings William, "Cryptography and Network Security - Principles and Practice", Pearson Education India, 2017.											
Web	References										
 Ajay Kumar, Dr S.Bose, "Cryptography and Network Security", Pearson Education India,2017 											
2. Manoj Kumar, "Cryptography and Network Security", Krishna Prakashan Media,2012											
	11		1.5.7 1	~ ·							

3. Behrouz A. Forouzan, Debdeep Mukhopadhyay, "Cryptography and Network Security (SIE)", Tata McGraw Hill Education Private Limited, 2011.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	3	3	1	2	2	3	1	3	2
CO3	3	2	2	1	3	3	3	1	3	3
CO4	3	2	2	1	3	3	2	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	16	17	6	18	15

COs - POs / PSOs Articulation Matrix

Relativity: $0 \rightarrow No$ relation $3 \rightarrow Highly relation$ $2 \rightarrow Medium relation$ $1 \rightarrow Low relation$ Grade Scale: $01 - 06 \rightarrow 1$ | $06 - 09 \rightarrow 2$ | $09 - 15 \rightarrow 3$

Court	~~~			Domain	Н	ours	/ W	/eek	Max. Ma		irks	
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDSI	DE1	DSE – I HEALTH CARE ANALYTICS	3	3:0:0	3			3	50	50	10 0	
Pre-req	uisite											
0		Course Outcomes				D	om	ain	L	_eve		
On suc	Cessil Unde	rstand the different formats of healthc.	nts <i>will</i> are data	be able to a. resourc	o : :es	~						
CO1	itive		K2									
CO2Analysis of healthcare data from various data sources like imaging, sensing, signalling and genomic dataCognitive												
CO3Apply analytics in natural language clinical text, biomedical literature and social media text for decision making in healthcare services.Cognitive												
CO4 <i>Apply</i> clinical predictive models to healthcare data to provide health outcomes in relevant populations of interest. Cognitive										K3		
CO5	Apply analytics on public health research											
CO6	<i>Unde</i> build	<i>rstand</i> and apply the relevant data anal decision support systems for healthcar	lytic mo e doma	odels to in		Co	ogni	itive		K2		
build decision support systems for healthcare domain 4.0 * K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create												
Module - I : INTRODUCTION TO HEALTHCARE ANALYSIS 9												
Introc Resou Codir Algor	luction arces the ng System rithms	n to Healthcare Data Analytics- Applic for healthcare data analytics - Electro stems - Benefits of EHR- Barrier t	cations nic Hea o Adoj	and pract alth Reco pting HI	tical ords ER	l sys - C Cha	sten Com aller	ns for ipone iges-	Heants c Phe	lthca of HE notyj	re – ER - ping	
N	lodul	e - II : HEALTHCARE DATA SOU	RCES	AND AN	NAI	LYS	IS			9		
Biom of Se health Media	edical ensor 1 ncare a cine –	Image Analysis: Imaging Modalities Data in Healthcare: Challenges – Sen applications – Biomedical Signal Analy Types of computational genomics.	– Obje nsor da ysis- Ge	ct detect ta minin enomic D	ion g a Data	– S ppli An	egn cati alys	nentations - ions - is for	tion - No Pers	- Min onclin sonal	ning nical ized	
		Module - III: HEALTH CARE	ANAL	YTICS						9		
Natur clinic recog resear	al Lan al rep nition rch	nguage Processing and Data Mining for orts – Clinical applications - Mining and extraction - Social Media Analyti	or Clini g the E cs for I	cal Text Biomedic Healthcar	- Cl al l e –	nalle itera ana	engo atur lyti	es in e – 1 cs on	proco Name publ	essin ed ei ic he	g in ntity ealth	
M	odule	- IV: ADVANCED DATA ANALYI	TICS O	N HEAI	LTE	ICA	RF	E		9		
Advar Data Integr Preser	nced 1 55 Mi ating rving 1	Data Analytics for Healthcare: Revie ning for Healthcare Data- Visual Ana Clinical and Genomic Data- Infor Data Publishing Methods in Healthcare	w of C alytics : mation	Clinical F for Healt Retriev	Pred hca al	ictio re- for	on 1 Pre He	Mode dictiv althca	ls- 7 e Mo are-	Temp odels Priva	oral for acy-	
Module - V: CASE STUDIES: HEALTHCARE APPLICATIONS												
Applications: Applications and Practical Systems for Healthcare– Data Analytics												
Department of CSA M.Sc. Data Science Curriculum (2023-2024) Page 52 of 8												

Health- Fraud Detection in Healthcare- Data Analytics for Pharmaceutical Discoveries-Clinical Decision Support Systems- Computer-Assisted Medical Image Analysis Systems-Mobile Imaging and Analytics for Biomedical Data.

	Lecture	Tutorial	Practical	Total
	45	0	0	45
Defe	nom oo Doolaa			

Reference Books

- 1. Chandan K.Reddy, Charu C. Aggarwal, "Health Care data Analysis", First edition, CRC, 2015.
- 2. Vikas Kumar, "Health Care Analysis Made Simple", Packt Publishing, 2018.

Web References

- 1. Nilanjan Dey, Amira Ashour, Simon James Fong, Chintan Bhatl, "Health Care Data Analysis and Management, First Edition, Academic Press, 2018
- 2. Hui Jang, Eva K.Lee, "HealthCare Analysis : From Data to Knowledge to Healthcare Improvement", First Edition, Wiley, 2016.
- 3. Kulkarni, Siarry, Singh, Abraham, Zhang, Zomaya, Baki, "Big Data Analytics in HealthCare", Springer, 2020.

E- References

4. https://www.coursera.org/courses?query=healthcare%20analytics

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	3
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	16	16	6	18	16

COs - POs / PSOs Articulation Matrix

Relativity: $0 \rightarrow$ No relation $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation $1 \rightarrow$ Low relationGrade Scale: $01 - 06 \rightarrow 1$ | $06 - 09 \rightarrow 2$ | $09 - 15 \rightarrow 3$

Course Domain Hours / Week Max. Mark											arks	
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDSI	DE2	DSE - I IoT ANALYTICS	3	3:0:0	3			3	50	50	10 0	
Pre-req	uisite											
		Course Outcomes				C	om	ain		_eve	1	
On suc	Unde	ui completion of this course, the	students will	be able t	0 : tion							
CO1	Lifec	ycle		la Allaly	ues	C	ogn	itive		K2		
CO2	Unde	prstand Machine Learning Applic	cation in IoT.			C	ogn	itive	• K2			
CO3	<i>Deve</i> intell	<i>lop</i> cognitive IoT solutions, leven igence and data science	aging artifici	al		C	ogn	itive		K5		
CO4	<i>Exan</i> vario	<i>nine</i> concepts of cloud based IoT us domains	, big data and	l IoT in		C	ogn	itive		K3		
CO5	CO5 Understand the propose new strategies for organizations to optimize cost benefits using IoT data. Cognitive											
CO6	66 <i>Explore</i> end-to-end data science industry use cases using the data analytics lifecycle. Cognitive											
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; K	4 - Analyze; K	5 - Evalua	te; k	(6 -	Crea	te	I			
	Мо	dule - I : Introduction to Intern	net of Things	s and An	alyt	tics				9		
Introc Netwo Analy Lifec	luction orking ytics: ycle a	n to Internet of Things (IoT): Co g Connectivity Protocols – IoT Data vs big data- Challenges nd Techniques.	Data Messa of IoT Ana	Definition ging Pro alytics A	n of tocc appl	Γο ols icat	Γ – – N ions	IoT I IQTT s - Io	Devia , Co oT A	es - AP. Analy	IoT IoT ytics	
	•	Module - II : IoT Cloud and	Big Data In	tegratior	1					9		
IoT C Colle – des IoT a	Cloud a ction - igning nalytic	and Big Data Integration: Cloud – WAZIUP software Platform – I g for scale – Cloud security and a cs.	based IoT pla Ikaas Softwar analytics – A	atform – 1 re Platfor WS over	Data m - viev	a Ai Ela w -	naly stic AW	vtics f analy /S ke	or Io ytics y ser	T – I conc vices	Data epts s for	
	Μ	odule - III: Strategies and Tech	nniques in Da	ata Colle	ectio	n				9		
Strate Apply Speci	egies ying H fic Pro	and Techniques in Data collec Big Data to Storage – Apache S oblems	tion: Design Spark for Io	ing Data Γ Data P	Pr Proc	oce essi	ssin ng	g for - Sol ⁻	· Ana ving	alytic Indu	≥s — istry	
Module - IV: Geospatial Analytics to IoT Data												
Geospatial Analytics to IoT Data: Basics – Vector and Raster Based Methods – Geospatial Data. Data Science for IoT Analytics – Machine Learning Basic – Fore data using ARIMA – Deep learning with IoT data												
		Module - V: Application	s & Case Stu	udies						9		
Appli for Sr	cation nart C	s & Case Studies: Data Analysi Cities – IoT Analytics: From Data	s in Smart B Collection to	uilding – Deploy	- Int mer	ern nt ar	et o nd C	f Thi Dperat	ngs A tional	Analy lizati	ytics on	
			Lecture	Tutori	al	Ρ	ract	ical	-	Γota		
			45	0			0			45		

Reference Books
1. Andrew Minteer, Analytics for the Internet of things, Packt publishing, 2017
2. John Soldatos, Building Blocks for IoT Analytics, River Publishers, 2016.
Web References
1. Rajkumar Buyya, Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Elsevier, 2016.
2. R. Chandrasekaran, Essentials of Cloud computing, 2nd Edition, Chapman and Hall/CRC, 2015.

3. Amita Kapoor, Hands on Artificial intelligence for IoT, 1st Edition, Packt Publishing, 2019

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	1	3	3	1	2	2	3	2	3	2
CO2	1	3	3	1	2	2	3	2	3	2
CO3	2	2	2	1	3	3	3	2	3	3
CO4	1	2	2	1	3	3	2	2	3	3
CO5	1	3	3	1	2	3	3	2	3	3
CO6	1	3	3	1	2	3	3	2	3	2
Total	7	16	16	6	14	16	17	12	18	15

COs - POs / PSOs Articulation Matrix

Cou	rc 0			Domain	Н	ours	/ W	/eek	Ma	x. Ma	irks	
Coc	de	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
		DSE – I									10	
YDS	DE3	IMAGE AND VIDEO	3	3:0:0	3			3	50	50	0	
	• •	ANALYTICS										
Pre-req	Juisite											
On suc	ccessf	Course Outcomes ul completion of this course, the	students will	be able t	o :	D	om	ain	L	_eve	I	
CO1	Unde comp	<i>rstand</i> the basics of image proce uter vision and video analysis	ssing techniq	ues for		Co	ogni	itive		K1		
CO2	Exple	<i>in</i> the techniques used for image	e pre-processi	ing.		Co	ogni	itive				
CO3	Deve	<i>lop</i> various object detection techn	niques			Co	ogni	itive				
CO4	Unde	rstand the various face recogniti		Co	ogni	itive						
CO5	Illust	rate on deep learning-based vide		Co	ogni	itive		K2				
CO6	Sumi	narize the concept on RestNet		Co	ogni	itive		K2				
* K1 -F	Remen	Crea	ite									
Module - I : INTRODUCTION												
Comj digiti data t	puter 'zation	Vision – Image representation a – properties – color images – De entation - Traditional and Hierarc	nd image and ata structures chical image of	alysis tas for Imag lata struc	ks ge A	- In Anal es.	nage ysis	e repr s - Le	resen vels	tation of in	ns – 1age	
	-pres	Module - II : IMAGE PR	E-PROCES	SING						9		
Local derive Edges by loc	l pre-j ative s in m cal pre	processing - Image smoothing - Scale in image processing - C ulti-speralct images - Local pre-p e-processing operators - Image re	- Edge detection Canny edge of processing in storation.	ctors - Z letection the frequ	Zero - F lenc	-cro Para Para	ossii met oma	ngs o ric ea iin - I	f the dge 1 Line o	e sec mode detec	ond els - tion	
Mo	odule	- III: OBJECT DETECTION U	USING MAC	CHINE L	EA	RN	INC	r J		9		
Object bound Faste archit	ct dete ding b r R-0 tecture	ction– Object detection methods ox approach-Intersection over U CNN-You Only Look Once es	– Deep Lear nion (IoU) – (YOLO)-Sali	ming frar Deep Lea ent feat	new arni ures	/ork ng / s-Lo	for Arcl	: Obje hitect Fune	ect de ures- ction	etecti R-Cl s-YC	ion– NN-)LO	
Mo	dule -	IV: FACE RECOGNITION A	ND GESTU	RE REC	OG	NĽ	ГЮ	N		9		
Face Recog using	Rec gnition FaceN	ognition-Introduction-Applicatio DeepFace solution by Faceboo NetGesture Recogn	ns of Fa k-FaceNet fo	ce Rec or Face 1	ogn Rec	itio ogn	n-Pi itio	rocess n- Im	s o Iplen	f I nenta	Face tion	
		Module - V: VIDEO	ANALYTIC	S						9		
Video proble archit	o Proc em-Re tecture	essing – use cases of video and estNet architecture-RestNet and -Improvement in Inception v2-V	alytics-Vanisl skip conne ideo analytic	ning Gra ections-In s-RestNe	dier cep t an	nt an tion Id Ir	nd o 1 N ncep	explo etwoi otion	ding ck-Go v3.	grad oogle	lient Net	
			Lecture	Tutori	al	Ρι	ract	ical	-	Γota	i i	
			45	0			0	0 45				

Reference Books

Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", 4nd edition, Thomson Learning, 2013.

Vaibhav Verdhan,(2021, Computer Vision Using Deep Learning Neural Network Architectures with Python and Keras,Apress 2021(UNIT-III,IV and V)

Web References

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011
- 2. Caifeng Shan, FatihPorikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003.
- 4. E. R. Davies, (2012), "Computer & Machine Vision", Fourth Edition, Academic Press.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15

COs - POs / PSOs Articulation Matrix

Relativity: $0 \rightarrow No$ relation $3 \rightarrow Highly relation$ $2 \rightarrow Medium relation$ $1 \rightarrow Low relation$ Grade Scale: $01 - 06 \rightarrow 1$ | $06 - 09 \rightarrow 2$ | $09 - 15 \rightarrow 3$

Cour	Course Domain Hours / W										Max. Ma	
Coc	le	Course Name	Credi	ts	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	204	MACHINE LEARNING TECHNIQUES LABORATO	RY 2		2:0:0			4	4	50	50	10 0
Pre-req	uisite											
On suc	cessf	Course Outcomes Jul completion of this course, the	students w		be able to	o :	D	om	ain	L	.evel	
CO1	Apply	w the basics in python programming	in different	orc	oblems		Co	ogni	itive		K3	
CO2	Apply	w the NumPy and pandas libraries to	handle the c	lata	a		Co	ogni	tive		K3	
CO3	Apply	the pandas and Matplotlib librarie	s for data vis	sua	lization		Co	ogni	itive			
CO4	Apply	itive	re K3									
CO5	5 <i>Apply</i> the R programming data visualization and transformations Cognitive											
CO6	O6 Apply the R programming transformationCognitive											
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; K	(4 - Analyze;	K5	5 - Evaluat	te; k	(6 - (Crea	te			
		LIST OF H	EXPERIM	El	NTS							
Ex. No.		Name of the	e Experimen	t						ŀ	lours	;
1	Imple	ementation of k-nearest neighbors' c	lassification								7	
2	Extra	ction of data from database									7	
3	Imple	ementation of linear regression									7	
4	Imple	ementation of Naïve bayes theorem t	to classify th	e I	English te	xt					7	
5	Imple	ementation of ID3 –Algorithm									7	
6	Implementation of Support Vector Machine algorithm											
7	Implementation of k – means algorithm											
8	Imple	ementation of hierarchical clustering	5							11		
	Mr.J.	Sengathir, Industry Expert Sugge	ested to incl	ud	e Ex. No.	78	& 8 .					
			Lecture		Tutoria	al	Pi	ract	ical	٦	Total	
	60											

COs - POs / PSOs	Articulation	Matrix
------------------	--------------	--------

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	7 17		18	15
Relativity	$: 0 \rightarrow 1$	No relatio	n 3-	\rightarrow Highly	relation	$2 \rightarrow$ Medium relation		lation	$1 \rightarrow Low$	relation

Grade Scale : $01 - 06 \rightarrow 1 | 06 - 09 \rightarrow 2 | 09 - 15 \rightarrow 3$

Cour	se	Course Name	Crodite	Domain	н	lour	s / \	Veek	Max. Marks		(S	
Cod	le	Course Marine	creats	C : P : A	L	т	Р	Tot.	CI A	ESE	Tot	
YDSI	DE4	HEALTH CARE ANALYTI LABORATORY	CS 2	2:0:0			4	4	5 0	50	10 0	
On suc	cessfi	Course Outcomes ul completion of this course, the s	students will	be able t	o :	I	Don	nain		Leve	¥	
CO1	Apply	MapReduce programs for processir	ng big data.			C	Cogr	itive		K3		
CO2	Realiz	ze storage of big data using MongoD	ЭB			C	Cogr	itive	K4			
CO3	Analy Decis	<i>ze</i> big data using machine learning t ion tree classification and clustering	echniques suc	ch as		C	Cogr	nitive	. K4			
CO4	Apply the clustering techniques to implement the program by SPARK Cognitive											
CO5	5 <i>Apply</i> the Mongo DB for solving problems Cognitive											
CO6	D6 <i>Apply</i> the Hadoop concept on datasets Cognitive											
* K1 - R	Remerr	nber; K2 - Understand; K3 - Apply; K	4 - Analyze; K	5 - Evalua	te; K	(6 - (Crea	te	<u> </u>			
		LIST OF E	XPERIME	NTS								
Ex. No.		Name of the	e Experiment							Hour	S	
1	Instal	l, configure and run python, numPy	and Pandas							7		
2	Instal	l, configure and run Hadoop and HD	PFS.							7		
3	Visua	lize data using basic plotting technic	ues in Pythor	ı						7		
4	Imple Mong	ment NoSQL Database Operations: goDB).	CRUD operat	tions, Arra	ıys u	ising	5			7		
5	Imple	ment Functions: Count – Sort – Lim	it – Skip – Ag	ggregate u	sing	Mo	ongo	DB.		7		
6	Implement word count / frequency programs using MapReduce											
7	Implement a MapReduce program that processes a dataset.											
8	Imple	ment clustering techniques using SP	ARK.						7			
9	Imple	ment an application that stores big d	ata in Mongo	DB / Pig ı	ising	g Ha	ıdoo	p / R.		4		
			Lecture	Tutori	al	F	rac	tical		Tota	ıl	
	60											

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1 3		2
Total	18	16	16	6	14	17	17 17 6		18	15
Relativity	$: 0 \rightarrow 1$	No relatio	on 3-	→ Highly	relation	$2 \rightarrow$ Medium relation		lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Cour	ourse Course Norse Credite Domain Hours / Week											
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Γot.	CIA	ESE	Tot	
YDSI	DE5	IoT ANALYTICS LABORATORY	2	2:0:0			4	4	50	50	10 0	
Pre-req	uisite						·					
On suc	cessf	Course Outcomes and completion of this course, the s	students will	be able to	o:	Do	omai	in	L	.evel		
CO1	Apply	the IOT concept on temperature ser	nsor interfacin	g		Co	gniti	ive		K3		
CO2	Apply	the Motor driver Interfacing				Co	gniti	ive				
CO3	Apply	the Reading Analog Voltage				Co	gniti	gnitive				
CO4	Apply	ive		K3								
CO5	Apply	ive										
CO6	Apply	VIOT on real time application case st	tudies			Co	gniti	ive				
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; K 4	4 - Analyze; K	5 - Evaluat	e; K	6 - C	create	е				
		LIST OF E	XPERIME	NTS								
Ex. No.		Name of the	Experiment						Hours			
1	Node Interf	MCU/ESP 32 - Temperature Sensor acing (HC05)- Motor driver Interfac	Interfacing (I ing (L298) -L	LM35) - B CD Interfa	luet acin	ooth g (H	D447	780)		10		
2	IMPL Activ (HD4	EMENTATION OF IoT using BLY ation - Blinking an LED -Reading A 4780) -Project	NK/CAYENN nalog Voltage	NE - –Insta 2 - LCD In	allat terfa	ion a acing	and g			10		
3	IMPL own s	EMENTATION OF IoT using Goog server – Project	gle Assistant –	Arest ser	ver ·	- Cre	eating	2		10		
4	IMPLEMENTATION OF IoT using Raspberry Pi & Python Programming: - LCDInterfacing (HD44780) - Motor driver Interfacing (L298) – Camera interface											
5	Real [®] Dr.V.	Time Applications Adithya Pothan Raj, Industry Exp	pert suggester	d this Ex.I	No.	5			20			
	Lecture Tutorial Practical											
				60								

COs P01 **PO2** PO3 PO4 **PO5 PO6 PO7 PO8** PSO1 PSO2 CO1 CO2 CO3 **CO4** CO5 CO6 Total $3 \rightarrow$ Highly relation : $0 \rightarrow \text{No relation}$ $2 \rightarrow$ Medium relation $1 \rightarrow$ Low relation Relativity

COs - POs / PSOs Articulation Matrix

Coui	Course Name Cr								Domain Ho				/eek	Max. Marks			
Cod	le		Ľ	ourse Na	me	C	credits	C : F	P : A	L	Т	Р	Tot.	CIA	ESE	Tot	
YDSI	DE6	IMA ANA	GE and ALYTIC	VIDEC S LABO) DRATOR	RY	2	2:0	0:0			4	4	50	50	10 0	
On suc	cessf	ul cor	C mpletion	Course O of this co	outcomes	s studen	ts will l	be ai	ble to	o <i>:</i>	D	om	ain	L	_eve	;I	
CO1	Apply	the b	asics prog	grams usir	ng MATL	AB					Co	ogni	itive		K3		
CO2	Apply	the D	OFT image	e analysis							Co	ogni	itive		K3		
CO3	Apply	the ti	ransforms	and histo	gram						Co	ogni	itive				
CO4	Apply	the fi	iltering m	ethods							Co	ogni	itive	tive K3			
CO5	Apply	the N	Aorpholog	gical opera	ations						Co	ogni	itive				
CO6	Apply	the d	lifferent co	olor mode	ls						Co	ogni	itive		K3		
* K1 - F	Remen	nber; l	K2 - Unde	rstand; K	3 - Apply;	K4 - Ana	lyze; K	5 - Ev	aluat	:e; k	(6 - (Crea	ite				
				LI	ST OF I	EXPER	RIME	NTS	5								
Ex. No.				N	ame of th	e Experi	ment							Hours			
1	Image	e samp	pling and	quantizati	on							5					
2	Analy	vsis of	spatial ar	nd intensit	y resolutio	on of ima	ages.						5				
3	Intens	sity tra	ansformat	ion of ima	ages								5				
4	DFT a	analys	sis of imag	ges								5			5		
5	Trans	forms	(Walsh, I	Hadamard	l, DCT, Ha	aar)									5		
6	Histo	gram 1	Processin	g											5		
7	Image	e Enha	ancement-	-Spatial fil	ltering										5		
8	Image	e Enha	ancement-	- Filtering	in frequer	ncy dom	ain								5		
9	Image	e segn	nentation	– Edge de	tection, lin	ne detect	tion and	d poi	nt de	tecti	on				5		
10	Basic Morphological operations										5						
11	Basic	Thres	sholding f	unctions											5		
12	Analy	vsis of	images w	vith differ	ent color r	nodels.									5		
						Lect	ure	Tu	utoria	al	Pr	act	ical	al Tota		I	
							-					60)		60		
00		04-	Dea	CO	s - POs /	PSOs A	Articul	latio	n Ma	atri	X	000		0.04	B	000	
COS	P	2	P02	P03	PO4	P05	PO	0	PO	7	P	1	P	501 2	P	502	
601	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1		3		2				

CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity	$: 0 \rightarrow 1$	No relatio	n 3-	\rightarrow Highly	relation	$2 \rightarrow N$	/ledium re	lation	$1 \rightarrow Low$	relation

Com				Domain	He	ours	/ W	/eek	Max	k. Ma	rks
Cou	le le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot
YDS	SE2	SEC - 2 CYBER SECURITY	3	3:0:0	2	1		3	60	40	10 0
Pre-req	luisite										
On suc	cessfi	Course Outcomes ul completion of this course, the studer	nts will a	able to :		D	om	ain	L	.eve	I
Understand about the Cyberwarfare and necessity to strengthen the cyber security of end user machine, critical IT and national critical infrastructure.Cognitive Analyza how report these arimes through the preseribed legel											
CO2 <i>Analyze</i> how report these crimes through the prescribed legal and Government channels. Cognitive										K3	
CO3	CognitiveCognitive									K3	
CO4	<i>Unde</i> relate	erstand other countries and legal and et et d to new technologies.	thical as	spects		C	ogni	tive		K2	
CO5	Unde media	erstand data privacy and security issues a platform	s related	l to Socia	ıl	C	ogni	K2			
CO6	Unde	erstand cyber security audit and compli	iance			C	ogni	itive		K2	
* K1 - F	Remerr	nber; K2 - Understand; K3 - Apply; K4 - An	alyze; K	5 - Evaluat	:e; k	(6 - (Crea	te			
		Module - I : Overview of Cyb	er secu	ırity						9	
Cybe attack actors Infras	r secu x vecto s, Cył structu	rity increasing threat landscape, Cybe or, attack surface, threat, risk, vulnerab per terrorism, Protection of end user are, Cyberwarfare, Case Studies	er securi pility, ez machi	ity termin xploit, ex ne, Critio	nolo plo cal	ogie itati IT	s- C lon, and	Cyber hack Nat	space er., N ional	e, att Ion-s Crit	ack, state tical
		Module - II : Cyber cr	imes							9	
Cybe bomb email card Pharr traffic misin cyber Case	r crim bs, Dos scam fraud ning, cking forma stalki studie	es targeting Computer systems and M S, DDoS, APTs, virus, Trojans, ranson s, Phishing, Vishing, Smishing, Onlin , Online payment fraud, Cyberbull Cyber espionage, Cryptojacking, Dar , Social Media Scams & Frauds- tion, fake newscyber crime against poing., Social Engineering attacks, Cybe	Iobiles- nware, o ne job f ying, v knet- il impers ersons - er Police	data did data bread fraud, On website legal tra- sonation, - cyber g e stations	dlin ch., lind defa des id roo s, C	ng a On e se acer , dr enti min rim	ittac line xtor nen ug ty ig, c e re	ks, sj scarr tion, t, Cy traffic theft, child portin	pywa Deb /berse cking job porne ng pr	re, lo d fran it/ cr quatt , hun sca ograj oced	ogic uds- edit ing, man ums, ohy, ure,

Module - III: Cyber Law

Cyber crime and legal landscape around the world, IT Act,2000 and its amendments. Limitations of IT Act, 2000. Cyber crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies

Module - IV: Data Privacy and Data Security

9

9

Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data

Protection	Regulations(GDPR),2016	Personal	Information	Protection	and	Electronic
Documents	Act (PIPEDA)., Social med	ia- data priv	vacy and secur	ity issues		

Module - V: Compliance and Governance

9

Cyber security Plan- cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy

Lecture	Tutorial	Practical	Total
30	15	0	45

Reference Books

- 1. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd.,
- 2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.

Web References

- 1. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.
- 2. Data Privacy Principles and Practice by Natraj Venkataramanan and Ashwin Shriram, CRC Press.
- 3. Information Security Governance, Guidance for Information Security Managers by W. KragBrothy, 1st Edition, Wiley Publication
- 4. Auditing IT Infrastructures for Compliance by Martin Weiss, Michael G. Solomon, 2nd Edition, Jones Bartlett Learning

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	1	1	1	1	1	3	3	3		
CO2	1	1	1	1	1	3	3	3		
CO3	1	1	1	1	1	3	3	3		
CO4	2	3	2	3	2	3	3	3		
CO5	2	3	2	3	2	3	3	3		
CO6	2	3	3	3	1	3	3	3		
Total	08	11	09	11	07	15	15	15		
D . 1 . (NT		. TT: - 1.1		2.1	1. 1.	1.41	1 × T	

COs vs POs

Relativity : $0 \rightarrow \text{No relation}$

 $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation

 $1 \rightarrow Low$ relation

SEMESTER - III

Cour	~~~			Domain	Нс	ours	/ W	leek	Ma	irks			
Cod	le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	301	BUSINESS INTELLIGENCE	4	4:0:0	3	1		4	50	50	10 0		
Pre-req	uisite												
		Course Outcomes						ain		0.10			
On suc	cessf	ul completion of this course, the s	students will	be able to	o:		om	ain	L	_eve	1		
CO1	Reca (BI)	<i>ll</i> the concepts and components	of Business	Intellige	nce	Co	ogni	tive	K	1 - K	12		
CO2	<i>Inter</i> from	<i>pret</i> the data provisioning in BI to the source to the target system	o fetch the de	sired dat	a	C	ogni	tive	K	1 - K	2		
CO3	Appl y transl	y the data visualization in Busines late the information into a visual	ss Intelligenc context	e to		Cognitive K3 - K4							
CO4	Anal	yze large sets of data through pro-	cess analysis	in BI		Co	ogni	tive	K	2 - K	[4		
CO5	<i>Evalı</i> strate	<i>uate</i> and construct BI tools critication give the state of an organization of an organization of an organization organiza	ally to suppor zation	t the		C	ogni	tive	K	2 - K	:5		
CO6	Anal	yze about Business Process Comp	oliance			Co	ogni	tive	5				
* K1 - F	Remen	nber; K2 - Understand; K3 - Apply; K	4 - Analyze; K	5 - Evaluat	te; K	6 - 0	Crea	te					
		Module - I : Introduction to	Business Int	elligence)				e K2 - K5 e K2 - K5 12 e into Contex 12 gence – Logi				
Introc Task	luction and A	n to Business Intelligence: Defin nalysis Format	ition– Puttin	g Busine	ss Iı	ntel	lige	nce in	nto C	Conte	xt –		
		Module - II : Modelling in I	Business Inte	lligence						12			
Mode and A	lling lgebr	in Business Intelligence: Models aic Structure – Graph Structure –	and Modell Analytical S	ing in Bu Structure	ısine – M	ess lode	Inte els a	lliger nd D	nce – ata	- Log	gical		
		Module - III: Data l	Provisioning							12			
Data Towa	Provi rds A	sioning: Data Collection and De nalytical Data – Scheme and Data	escription – a Integration	Data Ext	ract	ion	_ [Frans	actio	nal I	Data		
		Module - IV: Data Descripti	on and Visu	alization	l					12			
Data Descr Repor	Descr iption rting	ription and Visualization: Desc and visualization of data in cust	ription and comer perspec	visualiza ctive -Ba	tion sic `	for Business process Visualization Techniqu					ss – ue -		
		Module - V: Proce	ss Analysis										
Proces Manag	s Ai gemer	nalysis: Business process ana nt	lysis and	Simulatio	on		Pro	cess	perf	ince			
and W	areho	using – Process Mining – Busine	ss Process Co	omplianc	e – 1	Eva	luat	ion A	sses	smer	ıt		
			Lecture	Tutoria	al	Ρι	ract	ical	-	Γotal	I		
			45	15			0			60			
		Refer	ence Books										

- 1. Grossmann, Wilfried, and Rinderle-Ma, Stefanie. Fundamentals of Business Intelligence. Belgium, Springer Berlin Heidelberg, 2015.
- 2. Olszak, Celina M, "Business Intelligence and Big Data: Drivers of Organizational Success". United States, CRC Press, 2020
- 3. King, David, et al. Business Intelligence, Analytics, and Data Science: A Managerial Perspective. Germany, Pearson, 2017
- 4. Brijs, Bert. "Business Analysis for Business Intelligence", CRC Press, 2016.

Web References

- 1. VSP RAO, Human Resource Management, 3rd Edition, Excel Books, 2010.
- Mahadevan B, "Operations Management -Theory and Practice", 3rd Edition, Pearson Education, 2018.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	18	18	6	14	17	17	6	18	15

COs - POs / PSOs Articulation Matrix

Relativity : $0 \rightarrow \text{No relation}$ $3 \rightarrow \text{Highly relation}$ $2 \rightarrow \text{Medium relation}$ $1 \rightarrow \text{Low relation}$

Cour	rse			Domai	n H	lour	s / V	Veek	Ma	x. Ma	rks
Cod	le	Course Name	Credit	C:P:	4 L	т	Р	Tot.	CIA	ESE	Tot
YDS	302	EXPLORATORY DATA ANALYSIS and VISUALIZATION	4	4:0:	0 4	1		5	50	50	10 0
Pre-req	uisite		I								
On suc	cessfi	Course Outcomes	s students will	be able	to :	6	Dom	ain	L	_eve	I
CO1	Unde	erstand the fundamentals of expl	oratory data	analysis		C	ogn	itive		K2	
CO2	Imple	ement the data visualization using	ig Matplotlib	•		C	ogn	itive		K3	
CO3	Imple	ement the data visualization usin	g Matplotlib	•		C	ogn	itive		K3	
CO4	Apply	v bivariate data exploration and a	analysis.			C	ogn	itive		K3	
CO5	<i>Use</i> I multi	Data exploration and visualizatio variate and time series data.	n techniques	for		C	ogn	itive		K3	
CO6	Analy	yze the Time-based indexing				C	ogn	itive		K4	
* K1 - F	Remen	nber; K2 - Understand; K3 - Apply; I	K4 - Analyze; I	(5 - Evalu	ate;	K6 -	Crea	ate			
		Module - I : EXPLORATOR	RY DATA A	NALYS	SIS					12	
EDA data – Aids Trans tabula	funda - Com for E forma ations.	umentals – Understanding data paring EDA with classical and I EDA- Data transformation tech tion techniques - Grouping Da	science – Si Bayesian ana niques-merg tasets - data	gnifican lysis – S ing data aggrega	ce of oftw base ation	f EI vare e, re – I)A tool shap Pivo	– Ma s for ping t tabl	king EDA and es ar	sens - Vi pivot nd cr	e of sual ting, oss-
		Module - II : VISUALIZING	USING MA	TPLOT	LIB					12	
mport and c custor with S	ting N contou mizati Seabor	Matplotlib – Simple line plots – nr plots – Histograms – legen on – three dimensional plotting rn.	Simple scat ids – colors g - Geograph	ter plots – subj iic Data	– v olots with	isua – t n Βε	lizin text isem	ng err and nap -	ors - anno Visu	- der otatio aliza	nsity n – tion
		Module - III: UNIVAR	IATE ANAL	YSIS						12	
Introc and S	luction pread	n to Single variable: Distributio - Scaling and Standardizing – Ir	ons and Varia nequality - Sr	ables - I noothin	Jum g Tir	erica ne S	al Si Serie	umma s.	aries	of L	evel
	1	Module - IV: BIVARIA	ATE ANALY	YSIS						12	
Relati Handl	ionshi ling Se	ps between Two Variables - Pe everal Batches - Scatterplots and	ercentage Tal l Resistant Li	oles - A nes – Ti	naly: ansf	zing orm	Co atio	ntinge ns.	ency	es -	
	Modu	lle - V: MULTIVARIATE AN	D TIME SE	RIES A	NAI	LYS	IS			12	
Introd Beyon Clean	ucing 1d - Lo ing – '	a Third Variable - Causal Expla ongitudinal Data – Fundamentals Time-based indexing – Visualizi	nations - Thi s of TSA – C ng – Groupii	ree-Vari haracter ng – Res	able istic amp	Con s of ling	ting time	ency e serie	Tables dat	es an ta – I	d Data
			Lecture	Tuto	rial	Ρ	ract	tical	-	Tota	

		45	15	0	60
	Refe	rence Books			
1.	Suresh Kumar Mukhiya, Usman A Python", Packt Publishing, 2020. (U	.hmed, "Hand Jnit 1)	s-On Explo	ratory Data A	Analysis with
2.	Jake Vander Plas, "Python Data So Data", Oreilly, 1st Edition, 2016. (U	vience Handbo Jnit 2)	ook: Essentia	al Tools for V	Working with
3.	Catherine Marsh, Jane Elliott, "Ex Social Scientists", Wiley Publication	ploring Data: ons, 2nd Editic	An Introduc on, 2008. (Ui	ction to Data nit 3,4,5)	ı Analysis for
	Web	References			
1.	Eric Pimpler, Data Visualization an 2017	d Exploration	with R, Geo	Spatial Train	ning service,
2.	Claus O. Wilke, "Fundamentals of	Data Visualiza	ation", O'rei	lly publication	ons, 2019.
3.	Matthew O. Ward, Georges Grinste Foundations, Techniques, and Appl	ein, Daniel Ke ications", 2nd	im, "Interact Edition, CR	ive Data Vis C press, 201	ualization: 5.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity	$: 0 \rightarrow$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Cour	50			Domain	Но	ours	urs / Week Max. Marl					
Cod	e	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDS	303	DEEP LEARNING	4	4:0:0	3	1		1	50	50	10 0	
Pre-req	uisite							,				
On suc	cessfi	Course Outcomes	students will	be able t	o .	D	om	ain	L	_eve		
CO1	Under proble	<i>rstand</i> the deep learning concept ems	s and apply	for diffe	rent	C	ogni	itive		K2		
CO2	n Desig	<i>n</i> and apply Convolutional and Rec	urrent Neural	Networks		Co	ogni	itive		K2		
CO3	Under	rstand and evaluate different deep le	earning archite	ectures		Co	ogni	itive		K2		
CO4	Desig	<i>n</i> and create deep learning application	ons			С	ogn	itive		K2		
CO5	Analy	ze the role of deep learning models	in image proc	essing		Co	ogni	itive		K3		
CO6	Use o	of Different Storage Structures				Cognitive K3						
* K1 - R	emerr	nber; K2 - Understand; K3 - Apply; K	4 - Analyze; K	5 - Evalua	te; K	(6 - (Crea	ite				
		Module – I : Basics of N	Neural Netwo	rks					1	2 Hr	s	
Basics Back I	of ne Propag	eural networks - Basic concept of gation Networks	Neurons – Pe	erceptron	Algo	orith	nm -	- Feed	d For	ward	and	
		Module – II : Introduction	To Deep Lea	arning					1	2 Hr	s	
Introdu Algori Minim Dropo	uction thm – a – H ut	to deep learning - Feed Forward N - Vanishing Gradient problem – M leuristics for Faster Training – Nex	eural Networl Aitigation – I stors Accelera	ks – Gradi RelU Heu ated Gradi	ent l ristic lent	Des cs f Des	cent or A scen	– Ba Avoidi t – Re	ck Proing B egular	opaga ad L rizati	ation .ocal on –	
	l	Module - III : Convolutional & F	Recurrent Neu	ıral Netw	ork				1	2 Hr	s	
Convo Poolin RNNs	lution g Lay , Unfo	al neural networks - Kernel Filters ers – Transfer Learning – Image C Ided RNNs, Seq2Seq RNNs, LSTM	– Multiple Fil Classification I, RNN applic	ters - CNI using Tran ation	N Aı nsfei	chit r Le	tectu arni	nes – ng - 1	Conv Introc	voluti luctic	on – on to	
		Module – IV: Deep Learr	ning Architec	tures					1	2 Hr	S	
LSTM Contra	, GRI ctive-	U, Encoder/Decoder Architectures Variational Autoencoders – Advers	– Autoenco arial Generati	ders – St ve Networ	anda rks –	ard- - Au	Spa itoei	arse - ncode	- Dei r and	noisir DBM	1g – I	
		Module – V: Applications	s of Deep Lea	rning					1	2 Hr	s	
Multi-u Compar and Acc	ser C ring A cess S	Deperation – Data Transaction ACID and BASE – Processing of tructure – Layered Architecture –	 Consister Homogeneod Use of Diff 	ncy in Mous and Herent Sto	Mass Ieter rage	sive roge e Sti	e D enec ruct	istrib ous D ures.	uted ata –	Dat Stor	a – rage	
			Lecture	Tutori	al	Ρι	ract	ical	-	Fota	1	
			45	15			0			60		
		Refer	ence Books									

1. Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.

2. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

Web References

- 1. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 2. Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 3. Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018. 4Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.
- 4. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity	$: 0 \rightarrow 0$	No relatio	on 3-	→ Highly	relation	$2 \rightarrow N$	Aedium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

	Domain Hours / Week							/eek	Max. Marks			
Code		Course Name	Credits	C : P : A	L	T P Tot.		CIA ESE T		Tot		
YDS	GE4	GEC - II DIGITAL IMAGE PROCESSING	3	3:0:0	3			3	50	50	10 0	
Pre-req	luisite			I								
On sur		Course Outcomes	nto will	ha ahla t	o ·	D	om	ain	L	_eve		
CO1	Reca	<i>Il</i> the Digital Image Fundamentals			0.	C	oon	itive		K1		
CO2	Sum	<i>narize</i> the filtering in the frequency do	omain.				ogni	itive	K2			
CO3	Inter	pret Image restoration and reconstruction	ion				ogni	itive	K2 K3			
CO4	Exan	<i>nine</i> the various image transformation	technig	ues			ogni	itive		K3 V4		
C05	Asses	ss the color image processing.	1				ogni	itive		N4		
CO6	Desig	<i>n</i> the color image processing.					ogni	itive		KA		
* K1 - F	Remen	hber; K2 - Understand; K3 - Apply; K4 - An	alyze; K	5 - Evaluat	te; k	(6 - (Crea	ite		IXŦ		
		Module - I : Introduc	tion							9		
Comp Perce Samp the M	ponent ption pling a lathen	- Light and the Electromagnetic Spect and Quantization - Some Basic Relatination - Some Basic Relatination	gital Im trum. In onships ocessing	age Fund nage Sen Between	amo sing 1 Pi	enta g an xels	lls: 1 d A s - 2	Elemo cquis An Ir	ents of sition ntrodu	of Vi - In uctio	sual nage n to	
		Module - II : Frequency l	Domain	1						9		
Filter Fouri Exten Basic Doma Fouri	ing in er Tra sions s of H ain Fi er Tra	the Frequency Domain: Background insform of Sampled Functions - The I to Functions of Two Variables - Som Filtering in the Frequency Domain - I lters - Image Sharpening Using High nsform.	l - Preli Discrete le Prope Image S Ipass Fi	Fourier Fourier erties of t Smoothin ilters - S	Con Tra he 2 g U elec	cept nsfo 2-D Jsing	ts - orm DF g L e Fi	Sam of O T an owpa ilterin	pling ne V d IDl iss Fi ig - '	; and /arial FT - reque The	the ble - The ency Fast	
Module - III: Image Restoration and Reconstruction									9			
Image Only Positi Minin Geom	e Rest Spatia ion-In mum netric	toration and Reconstruction: Noise M al Filtering - Periodic Noise Reduction variant Degradations - Estimating the Mean Square Error (Wiener) Filteri Mean Filter	lodels - n Using e Degra ng - C	Restorat Frequence Idation F Constraine	ion cy I Yunc ed I	in Dom tion Leas	the nain 1 - st S	Prese Filte Inver	ence ering se Fi es Fi	of N - Lir ilteri lterii	oise near, ng - ng -	
Module - IV: Wavelet and Other Image Transforms							9					
Wave Funct Hadar	elet an ions i mard 7	nd Other Image Transforms: Matri n the Time-Frequency Plane - Basis In Transforms - Slant Transform - Haar T	x-based mages - ransfor	Transfo Fourier- m - Wave	orm Rel elet	s – atec Tra	Co I Tr nsfo	orrela ansfo orms	tion orms	- E - Wa	≀asis 1lsh-	
Module - V: Color Image Processing									9			

Color Image Processing: Color Fundamentals - Color Models - Pseudocolor Image Processing -Basics of Full-Color Image Processing - Color Transformations - Color Image Smoothing and Sharpening - Using Color in Image Segmentation - Noise in Color Images - Color Image Compression

45 0 0 45	Lecture	Tutorial	Practical	Total
	45	0	0	45

Reference Books

1. Rafael Gonzalez, Richard E. Woods, "Digital Image Processing", Fourth Edition, PHI/Pearson Education, 2018.

Web References

1. Digital Image Processing using Matlab, Rafeal C. Gonzalez, Richard E. Woods, Steven L. Eddins, Pearson Education.

- 2. Introduction to Image Processing & Analysis-JohnC.Russ, J.ChristianRuss, CRC Press, 2010
- 3. Digital Image Processing with MATLAB & Labview Vipula Singh Elsevier

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2		
CO1	3	3	3	1	2	2	3	1	3	2		
CO2	3	2	2	1	3	3	3	1	2	3		
CO3	3	2	1	1	3	3	2	1	3	3		
CO4	3	3	3	1	1	3	3	1	3	3		
CO5	2	3	3	1	2	3	3	1	1	2		
CO6	2	3	3	1	2	3	3	1	1	2		
Total	16	16	15	6	13	17	17	6	13	15		
Relativity : $0 \rightarrow \text{No relation}$			n 3-	→ Highly	Highly relation $2 \rightarrow$ Medium re			lation $1 \rightarrow \text{Low relation}$				

COs - POs / PSOs Articulation Matrix

Course Domain Hour								urs / Week			Max. Marks		
Cou	de	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDSGE5		GEC - II NATURAL LANGUAGI PROCESSING	E 3	3:0:0	3			3	50	50	10 0		
Pre-requisite													
Course Outcomes Domain On successful completion of this course, the students will be able to : Domain									L	Level			
CO1	Defin	Define the Linear Text Classification of NLP Cognitive									K1		
CO2	Dem	onstrate the Nonlinear classificat	ion			Co	ogni	itive	К2				
CO3	Ident	tify the various Language Models	of NLP			C	ogni	itive	K1				
CO4	CO4Analyze and Apply the Formal Language TheoryCognitive										K4		
CO5	CO5 <i>Explain</i> and formulate the Logical Semantics Predicate argument Semantics Cognitive										K2		
CO6	O6Evaluate Predicate argument SemanticsCognitive									K5			
 * K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 													
Module - I : NLP Introduction 9													
NLP Introduction: Natural Language Processing and Its Neighbours – Three Themes in NLP - Linear Text Classification: The bag of words – Naïve Bayes – Discriminative Learning – Loss Functions and Large-margin Classification – Logistic Regression – Optimization													
		Module - II : Nonlinea	r Classificat	ion						9			
Nonlinear Classification: Feedforward Neural Network – Designing Neural Network – Learning Neural Network – Conventional Neural Network - Linguistic Applications of Classification: Sentiment and Opinion Analysis – Word Sense Disambiguation – Design Decisions for Text Classification – Evaluating Classifier – Building Datasets													
Module - III: Language Models 9													
Language Models: N-Gram Language Models – Smoothing and Discounting – Recurrent Neural Network Models – Evaluating Language Models – Out of Vocabulary Words - Sequence Labeling: Sequence Labeling as Classification – Structure Prediction – The Viterbi Algorithm – Hidden Markov Model.													
Module - IV: Formal Language Theory 9													
Formal Language Theory: Regular Languages – Context Free Languages - Context Free Parsing: Deterministic Bottom up Parsing – Ambiguity – Weighted Context Free Grammars – Learning Weighted Context Free Grammars – Grammar Refinement													
Module - V: Logical Semantics								9					
Logical Semantics: Meaning and Denotation – Logical Representation of Meaning – Semantic Parsing and the Lambda Calculus – Learning Semantic Parsers - PredicateArgument Semantics: Semantic Roles – Semantic Role Labeling – Abstract Meaning Representation													
Lecture Tutorial Practical										Fotal			
		45	0	0	45								
-----------------	--	----------------	--------------	----------------	-----	--	--	--	--	--	--	--	
Reference Books													
1.	1. Jacob Eisenstein, "Introduction to Natural Language Processing", MIT Press, 2019.												
Web References													
1.	Lawrence Rabiner, Biing-Hwang Juang, Recognition" 1st Edition, Pearson, 2009.	B. Yegnanaraya	ana, "Fundam	entals of Spee	ech								
2.	 Steven Bird, Ewan Klein, and Edward Loper, "Natural language processing with Python", O'REILLY 												

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	2	3
CO3	3	2	1	1	3	3	2	1	3	3
CO4	3	3	3	1	1	3	3	1	3	3
CO5	2	3	3	1	2	3	3	1	1	2
CO6	2	3	3	1	2	3	3	1	1	2
Total	16	16	15	6	13	17	17	6	13	15
Relativity	$: 0 \rightarrow$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow N$	/ledium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Cour				Domain	Н	ours	/ W	/eek	Ma	k. Ma	arks		
Cou	rse de	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	GE6	GEC - II CLOUD AND EDGE COMPUTING	3	3:0:0	3			3	50	50	10 0		
Pre-req	luisite												
On suc	cessf	Course Outcomes	students will	be able t	o :	D	om	ain	L	eve	I		
CO1	Unde	erstand the design challenges in	the cloud			C	ogni	itive		K2			
CO2	Apply	y the concept of virtualization an	d its types			C	ogni	itive		K3			
CO3	<i>Expe</i> Dock	<i>rimen</i> t with virtualization of har	dware resourc	ces and		C	ogni	itive		K3			
CO4	<i>Deve</i> envir	<i>lop</i> and deploy services on the comment.	loud and set u	p a cloud	l	Co	ogni	itive	K4				
CO5	Expl	ain security challenges in the clo	oud environme	ent.		Co	ogni	itive		K2			
CO6	Anal	yze IAM Challenges				Co	ogni	itive	e K4				
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; I	K4 - Analyze; K	5 - Evaluat	te; k	K6 - Create							
	M	odule - I : Cloud Architecture	Models and I	Infrastru	ctu	re				9			
Cloud Comp Infras	d Arc puting structu	hitecture: System Models for 1 Reference Architecture – Cloud re: Architectural Design of Com	Distributed and deployment in a second secon	nd Cloud models – age Clou	l C Clo ds -	omp oud - De	outii serv esig	ng – vice n n Cha	NIS nodel alleng	T Cl ls; Cl ges	loud loud		
		Module - II : Virtua	lization Basic	es						9			
Virtu Virtu Virtu Mem	al Ma alizati alizati ory an	chine Basics – Taxonomy of V on structure – Implementation – on – Para Virtualization – H ad I/O devices.	Virtual Machi levels of virtu lardware Virt	ines – H alization aulizatio	ype _ ` n _	rvis Virt - V	or - uali irtu	– Key zatior alizat	y Co n Tyj ion	ncep pes: of C	ts – Full 'PU,		
]	Module - III: Virtualization In	frastructure	and Doc	ker					9			
Deskt Opera Mana Comj	top V ating igeme ponent	irtualization – Network Virtual Virtualization – Application nt – Containers vs. Virtual ts – Docker Container – Docker	ization – Sto Virtualization Machines – Images and R	rage Virt n – Vir Introduc epositori	tuali tual ctio es.	izati cl n t	ion uste o I	– Sy ers a Docke	stem nd I er –	-leve Resor Doe	l of urce cker		
		Module - Iv: Cloud Deploy	yment Enviro	onment						9			
Goog Eucal	le Ap yptus	p Engine – Amazon AWS – 1 – OpenStack.	Microsoft Az	ure; Clou	ıd S	Soft	war	e En	viron	men	ts –		
		Module - V: Clou	id Security							9			
Virtua Data Archi	alizati Secur tectur	on System-Specific Attacks: Gu ity and Storage; Identity and Ac e and Practice	est hopping – ecess Manage	- VM mig ment (IA	grati M)	ion - IA	atta AM	ck – Chal	hype lenge	rjack es - I	ing. AM		
			Lecture	Tutori	al	Ρι	ract	ical	-	Fotal	1		
			45	0			0			45			

Reference Books

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. James Turnbull, "The Docker Book", O'Reilly Publishers, 2014.

Web References

- 1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 2. Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: an enterprise perspective on risks and compliance", O'Reilly Media, Inc., 2009

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	2	3
CO3	3	2	1	1	3	3	2	1	3	3
CO4	3	3	3	1	1	3	3	1	3	3
CO5	2	3	3	1	2	3	3	1	1	2
CO5	2	3	3	1	2	3	3	1	1	2
Total	16	16	15	6	13	17	17	6	13	15

COs - POs / PSOs Articulation Matrix

Relativity : $0 \rightarrow$ No relation $3 \rightarrow$ Highly relation $2 \rightarrow$ Medium relation $1 \rightarrow$ Low relation

Court				Domain	Но	lours / Week Max. Ma					rks		
Cou	le le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot		
YDS	305	BUSINESS INTELLIGEN LABORATORY USING ADVANCED EXCEL an POWER BI	CE 5 2 d	2:0:0			4	4	50	50	10 0		
Pre-req	uisite												
On suc	cessf	Course Outcomes ul completion of this course, the	students will	be able to	o :	D	om	ain	L	.evel			
CO1	<i>Explo</i> analy	<i>uin</i> the real-world business probletical solutions.	lems and mod	el with		C	ogni	itive		K3			
CO2	<i>Ident</i> Intell	<i>ify</i> the business processes for ex igence	tracting Busir	ness		C	ogni	itive		K3			
CO3	Apply	v predictive analytics for busines	s fore-casting			C	ogni	itive					
CO4	Apply	v analytics for supply chain and l	logistics mana	igement		C	CognitiveK3CognitiveK3CognitiveK3						
CO5	Apply	v analytics for supply chain and l	logistics mana	igement		C	ogni	K3					
CO5	Apply	v various plotting functions on th	ne data set			C	ogni	itive		CIA ESE 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50			
* K1 -F	Remem	nber; K2 - Understand; K3 - Apply; I	(4 - Analyze; K	ite	I								
		LIST OF I	EXPERIME	NTS									
Ex. No.		Name of the	e Experiment						H	lours	;		
1	Explo	ore the features of Ms-Excel.								7			
2	(i) Ge AVG ii) Pe	et the input from user and perform , SUM, SQRT, ROUND) rform data import/export operati	m numerical o	operations	s (N orma	IAΣ ats.	Κ, Μ	IIN,		7			
3	Perfo devia	rm statistical operations - Mean, tion, Variance, Skewness, Kurto	Median, Moo sis	de and Sta	and	ard				7			
4	Perfo	rm Z-test, T-test & ANOVA								7			
5	Perfo i) ii	rm data pre-processing operation Handling Missing data) Normalization	18				7						
6	Perfo	rm dimensionality reduction ope	eration using I	PCA, KP	CA	& S	SVD)					
7	Perfo	rm bivariate and multivariate an	alysis on the o	lataset.						7			
8	Appl	y and explore various plotting fu	nctions on the	e data set						7			
	Dr.S.	Nickolas Academic Expert sugges	sted to include	Ex.No. 7	& 8	3.				11			
			Lecture	Tutoria	al	P	ract	ical	٦	Fotal			
							60)		60			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity : $0 \rightarrow \text{No relation}$			n 3-	\rightarrow Highly	relation	$2 \rightarrow N$	/ledium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix

Cour				Domain	Но	ours	/ W	/eek	Max. Ma		rks	
Cod	se le	Course Name	Credits	C : P : A	L	т	Р	Tot.	CIA	ESE	Tot	
YDS.	306	DEEP LEARNING LABORATORY	2	2:0:0			4	4	50	50	10 0	
Pre-req	uisite											
On suc	cessf	Course Outcomes ul completion of this course, the s	tudents will	be able to	o :	D	om	ain	L	.evel	I	
CO1	Apply	deep neural network for simple prob	olems.			Co	ogni	itive		K3		
CO2	Apply	Convolution Neural Network for im	age processin	ıg.		Co	ogni	itive		K3		
CO3	Apply	Recurrent Neural Network and its v	ariants for tex	t analysis		Co	ogni	itive		K3		
CO4	Apply	generative models for data augment	ation.			Co	ogni	tive		K3		
CO5	Devel	<i>op</i> a real world application using sui	table deep neu	ural netwo	orks	Co	ogni	PTot.CIAESE4450504450504505050505050505050505050505050505065050650506505065050650506505065050650506505065050650506505065050650506505065050650506505065050750				
CO6	Apply	real world application using suitable	e deep neural	networks		Co	ogni	itive		K3		
* K1 - F	Remen	nber; K2 - Understand; K3 - Apply; K 4	1 - Analyze; K	5 - Evaluat	:e; k	(6 - (Crea	te				
		LIST OF E	XPERIME	NTS								
Ex. No.		Name of the	Experiment						ŀ	lours	;	
1	Solvii	ng XOR problem using Multilayer pe	erceptron							10		
2	Imple	ment character and Digit Recognitio	n using ANN.							10		
3	Imple	ment the analysis of X-ray image usi	ing auto encod	ders						10		
4	Devel using	op a code to design object detection CNN	and classifica	tion for tr	affic	c ana	alysi	is		10		
5	Imple analy	ment online fraud detection of share tics tools.	market data u	ising any o	one	of tl	ne da	ata		10		
6	Imple	ment Sentiment Analysis using LST	M.							10		
	Dr.V. & 6	Adithya Pothan Raj Industry Exp	oert suggested	d that to i	nclı	ıde	Ex.	No. 5				
			Lecture	Tutoria	al	Ρι	ract	ical	٦	Total		
							60)		60		

COs -	POs /	' PSOs	Articulation	Matrix
-------	-------	--------	--------------	--------

	COs	P01	PO2	PO3	PO4	PO5	PO	6	P07		PO8	PSO1	PSO2
(CO1	3	3	3	1	2	2		3		1	3	2
(CO2	3	2	2	1	3	3		3		1	3	3
	CO3	3	2	2	1	3	3		2		1	3	3
(CO4	3	3	3	1	2	3		3		1	3	3
(CO5	3	3	3	1	2	3		3		1	3	2
(CO6	3	3	3	1	2	3		3		1	3	2
]	[otal	18	16	16	6	14	17	7	17		6	18	15
Re	elativity	: 0-	No relatio	on 3-	\rightarrow Highly	relation	2 -	$\rightarrow M$	ledium	rela	tion	$1 \rightarrow Lov$	v relatio
	Course		C	Course Na	me		Credits	Don	nain	Hou	rs / We	ek Ma	x. Marks

Department of CSA | M.Sc. Data Science Curriculum (2023-2024)

Coc	de			C : P : A	L	т	Tot.	CIA	ESE	Tot	
YDS	SE3	SEC - 3 RESEARCH ETHICS AND SKILLS	3	3:0:0	2	1		3	60	40	10 0
Pre-req	luisite							1			
On suc	cessfi	Course Outcomes ul completion of this course, the studer	nts will	able to :		D	om	ain	L	.eve	
CO1	Unde streng and n	erstanding about the Cyberwarfare and gthen the cyber security of end user manational critical infrastructure.	necess chine,	ity to critical IT		C	ogni	itive	K2		
CO2	Analy and C	<i>yze</i> how report these crimes through the Government channels.	e presc	ribed lega	l	C	ogni	itive		K3	
CO3	<i>Unde</i> relate	erstand other countries and legal and et	hical a	spects		C	ogni	itive		K2	
CO4	Unde media	erstand data privacy and security issues a platform	relate	d to Socia	1	C	ogni	itive		K3	
CO5	Unde	erstand cyber security audit and compli	ance			C	ogni	itive		K2	
CO6	Apply	y cyber security audit and compliance				C	ogni	itive		K3	
* K1 -F	Remen	nber; K2 - Understand; K3 - Apply; K4 - Ana	alyze; K	5 - Evaluat	:e; k	(6 -	Crea	ite			
		Module - I : Philosophy And Ethics &	Scient	ific Condu	ict					9	
Introd philos Intelle Plagia Select	luction sophy, ectual arism(F tive rep	to Philosophy : definition, nature and Sco nature of moral judgements and reactio honesty and research integrity - Scienti FFP) - Redundant publications: duplicate porting and misrepresentation of data.	ppe, Con on. Ethi fic mis e and	ncept, Bran ics with re- sconducts: overlappin	nche espe Fa g f	es - ect 1 lsifi oubli	Ethi to se catic icati	cience cience on, Fa ons, s	finition and abrica salam	on, m rese tion, i slic	oral arch and ing.
		Module - II : Publication	Ethics							9	
Publication ethics: definition, introduction and importance - Best practices /Standards setting initiative and guidelines: COPE. WAME, etc., - Conflicts of interest - Publication misconduct: definition											

concept, problems that lead to unethical behavior and vice versa, types - Violation of publication ethics, authorship and contributorship - Identification of publication misconduct, complaints and appeals - Predatory publishers and journals

Module - III: Open Access Publishing

9

9

9

Open access publications and initiatives - SHEERPA/RoMEO online resource to check publisher copyright & Self – archiving policies - Software tool to identify predatory publications developed by SPPU - Journal finder /Journal suggestion tools viz.JANE., Elsevier journal Finder, Springer Journal Suggester, etc.

Module - IV: Publication Misconduct

Group Discussions: Subject specific ethical issues, FFP, authorship - Conflicts of interest - Complaints and appeals: examples and fraud from India and abroad. Software tools: Use of plagiarism software like Turnitin, Urkund and other open source software tools.

Module - V: Databases and Research Metrics

Databases: Indexing databases - Citation databases: Web of Science, Scopus, etc

Research Metrics: Impact Factor of Journal as per Journal Citation Report, SNIP, SJR, IPP, Cite Score - Metrics: h-index, g index, i10 index, altmetric

		Lecture Tutorial Practical Total											
		30	15	0	45								
	Reference Books												
1.	1. Bird, A.(2006). Philosophy of Science.Routledge												
2.	2. MacIntyre, Alasdair (1967) A Short History of Ethics. London												
3.	P.Chaddah, (2018) Ethics in Competitive R ISBN :978-9387480865	esearch: Do no	ot get Scooped	l; do not get Pl	agiarized,								
4.	National Academy of Sciences, National A (2009). On Being a Scientist: A Guide to re Academies Press	cademy of Eng esponsible cond	ineering and l luct in Researc	Institute of Me ch: Third Editi	edicine. Ion, National								
5.	Resnik, D.B.(2011) What is ethics in resear Environmental Health Science, 1-10 Retrie https://www.niehs.nih.gov/research/resource	rch & why is it ved from es/bioethics/wl	important. Na hatis/index.cfi	ntional institute m	e of								
	Web	References											
1.	 Beall, J: (2012) Predatory publishers are corrupting open access. Nature, 489(7415), 179-179. https://doi.org/10.1038/489179a 												
2.	 Indian National Science Academy (INSA), Ethics in Science Education, Research and Governance (2019), ISBN:978-81-939482-1-7. htt://www.insaindia.res.in/pdf/Ethics_Book.pdf 												

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	3	3	3	1	2	2	3	1	3	2
CO2	3	2	2	1	3	3	3	1	3	3
CO3	3	2	2	1	3	3	2	1	3	3
CO4	3	3	3	1	2	3	3	1	3	3
CO5	3	3	3	1	2	3	3	1	3	2
CO6	3	3	3	1	2	3	3	1	3	2
Total	18	16	16	6	14	17	17	6	18	15
Relativity	$: 0 \rightarrow 0$	No relatio	on 3-	\rightarrow Highly	relation	$2 \rightarrow M$	Aedium re	lation	$1 \rightarrow Low$	relation

COs - POs / PSOs Articulation Matrix